# MADE EASY&NEXTIRS GROUP

PRESENT

# NEET | IIT-JEE | FOUNDATION

# Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

#### Maximum Marks: 720

Time : 3 Hours



# **NEET (UG) – 2014**

# **Important Instructions**

- 1. I he Answer Sheet is inside the Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on **side-1** and **side-2** carefully with blue/ black toll point pen only.
- 2. The test is of 3 hours duration and lest Booklet contains 180 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, **one mark** will be deducted from the total scores. The maximum marks are **720**.
- 3. Use Blue/Black Ball Point Pen only for writing particulars on this page / marking responses.
- 4. Rough work o to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must handover the Answer Sheet to the invigilator in the Room/Hall. The candidate are allowed to take away this Test Booklet with them.
- 6. The CODE forth it Booklet is **S**. Make sure that the CODE printed on **Side-2** of the Answer Sheet is the same as that on this Booklet. In case of discrepancy, the candidate should immediately report the matter to the invigilator for replacement of both the Test Booklet and the Answer Sheet.
- The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your roll no. anywhere else except in the specified space in the Test Booklet /vAnswer Sheet.
- 8. Use of white fluid for correction is NOT permissible on the Answer Sheet.
- 9. Each candidate must show on demand his/her Admission Card to the Invigilator.
- 10. No candidates, without special permission of the Superintendent or Invigilator would leave his/her seat.
- 11. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. Cases where a candidate has not signed the Attendance Sheet the second time will be deemed not to have handed over Answer Sheet and dealt with as an unfair means ease.
- 12. Use of Electronic / Manual Calculator is prohibited
- 13. The candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.
- 14. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 15. The candidates will write the Correct Test Booklet Code as given in the Test Booklet / Answer Sheet in the Attendance Sheet.

(1)

 $20 \Omega$ 

(2)

25 Ω

#### menii



10. Two cities are 150 km apart. Electric power is sent from one city to another city through copper wires. The fall of potential per km is 8 volt and the averge resistance per km is 0.5  $\Omega$ . The power loss in the wire is :

(3)

 $10 \,\Omega$ 

(4)

15 Ω

- (1) 19.2 J (2) 12.2 kW (3) 19.2 W (4) 19.2 kW
- 11. A system consists of three masses  $m_1$ ,  $m_2$  and  $m_3$  connected by a string passing over a pulley P. The mass  $m_1$  hangs freely and  $m_2$  and  $m_3$  are on rough horizontal table (the coefficient of friction =  $\mu$ ). The pulley is frictionless and of negligible mass. The downward acceleration of mass  $m_1$  is : (Assume  $m_1 = m_2 = m_3 = m$ )



12. If the kinetic energy of the particle is increased to 16 times its previous value, the percentage change in the de–Broglie wavelength of the particle is :

25

(4)

75

- **(1)** 60 **(2)** 50 **(3)**
- 13. A beam of light of  $\lambda = 600$  nm from a distant source falls on a single slit 1 mm wide and the resulting diffraction pattern is observed on a screen 2m away. The distance between first dark fringes oneither side of the central bright fringe is :

- 14. A black hole is an object whose gravitational field is so strong that even light cannot escape from it. To what approximate radius would earth (mass =  $5.98 \times 10^{24}$  kg) have to be compressed to be a black hole? (1)  $10^{-2}$  m (2) 100m (3)  $10^{-9}$  m (4)  $10^{-6}$  m
- 15. The oscillation of a body on a smooth horizontal surface is represented by the equation,

Where

 $X = A \cos (\omega t)$  X = displacement at time t $\omega = \text{frequency of oscillation}$ 

Which one of the following graphs shows correctly the variation 'a' with 't'?



- 16. A solid cylinder of mass 50 kg and radius 0.5 m is free to rotate about the horizontal axis. A massless string is wound round the cylinder with one end attached to it and other hanging freely. Tension in the string required to produce an angular acceleration of 2 revolutions  $s^{-2}$  is :
  - (1) 78.5 N (2) 157 N (3) 25 N (4) 50 N
- 17. The ratio of the accelerations for a solid sphere (mass 'm' and radius 'R') rolling down an incline of angle 'θ' without slipping and slipping down the incline without rolling is:
  (1) 2:5
  (2) 7:5
  (3) 5:7
  (4) 2:3
- **18.** A thin semicircular conducting ring (PQR) of radius 'r' is falling with its plane vertical in a horizontal magnetic field B, as shown in figure. The potential difference developed across the ring when its speed if v, is :

|     |                       |                                      |                             | × ×                                        | ×               | ×                                         |                                  |                                                                              |
|-----|-----------------------|--------------------------------------|-----------------------------|--------------------------------------------|-----------------|-------------------------------------------|----------------------------------|------------------------------------------------------------------------------|
|     |                       |                                      |                             | × ×                                        | Q× <sup>B</sup> | ×                                         |                                  |                                                                              |
|     |                       |                                      |                             |                                            | r               |                                           |                                  |                                                                              |
|     | (1)                   | πrBy and R is                        | at higher                   | ×P/ ×                                      | (2)             | RX<br>2rBy and R is                       | at highe                         | r notential                                                                  |
|     | (1)                   | Zero                                 | at inglici                  | potential                                  | (2)             | $Bv\pi r^2 / 2$ and                       | P is at hi                       | gher potential                                                               |
| 19. | In the                | Young's doubl                        | e slit exp                  | eriment, the in                            | tensity of      | f light at a poin                         | t on the                         | screen where the path                                                        |
|     | differe               | ence is $\lambda$ is K, (2)          | $\lambda$ being the t       | he wave length                             | of light        | used). The inte                           | nsity at a                       | a point where the path                                                       |
|     | differe               | ence is $\lambda/4$ , will           | be                          |                                            |                 |                                           |                                  |                                                                              |
|     | (1)                   | K / 2                                | (2)                         | Zero                                       | (3)             | К                                         | (4)                              | K/4                                                                          |
| 20. | A radi                | o isotope 'X' w                      | ith a half                  | life $1.4 \times 10^9$ y<br>in 'X' and 'X' | ears deca       | ys to 'Y' which<br>in $1 \div 7$ The age  | is stable                        | e. A sample of the rock                                                      |
|     | (1)                   | $4.20 \times 10^9$ yea               | ars                         |                                            | (2)             | $8.40 \times 10^9$ yea                    | ars                              | JCK 15.                                                                      |
|     | (3)                   | $1.96 \times 10^9$ yea               | ars                         |                                            | (4)             | $3.92 \times 10^9$ yea                    | ars                              | ~                                                                            |
| 21. | Light                 | with an energy                       | flux of 25                  | $5 \times 10^4 \text{ Wm}^{-2} \text{ fa}$ | lls on a p      | erfectly reflecti                         | ng surfa                         | ce at normal incidence.                                                      |
|     | If the s              | surface area is 1                    | $5 \text{ cm}^2$ , th       | e average force $2.0 \times 10^{-6}$ N     | exerted (2)     | on the surface is $1.25 \times 10^{-6}$ N | :                                | $2.50 \times 10^{-6}$ M                                                      |
| 22  | (I)<br>Cortain        | $1.20 \times 10^{-5} \text{ N}$      | (2)                         | $3.0 \times 10^{-1} \text{ N}$             | (3)             | $1.25 \times 10^{-1} \text{ N}$           | (4)                              | • $2.50 \times 10^{\circ}$ N                                                 |
| 22. | minute                | es. The temperation                  | ture of the                 | e surroundings                             | is :            | the first 5 min                           | utes and                         | to 54 C in the next 5                                                        |
|     | (1)                   | 42°C                                 | (2)                         | 10°C                                       | (3)             | 45°C                                      | (4)                              | 20°C                                                                         |
| 23. | A mor                 | noatomic gas at                      | a pressur                   | e P, having a v                            | olume V         | expands isother                           | mally to                         | a volume 2V and then                                                         |
|     | adiaba                | tically to a volu                    | me 16V.                     | The final press                            | ure of the      | gas is : (take γ                          | = 5/3)                           |                                                                              |
|     | (1)                   | P/64                                 | (2)                         | 16P                                        | (3)             | 64P                                       | (4)                              | 32P                                                                          |
| 24. | A proj                | jectile is fired                     | from the                    | surface of the                             | earth wi        | th a velocity of<br>the with a velocity   | f 5 ms <sup>-1</sup><br>twof 3 r | and angle $\theta$ with the                                                  |
|     | follow                | s a trajectory wl                    | hich is ide                 | entical with the                           | trajectory      | of the projectil                          | e fired fr                       | om the earth. The value                                                      |
|     | of the                | acceleration due                     | e to gravi                  | ty on the planet                           | is (in ms       | $^{-2}$ ) is: (given g =                  | = 9.8ms <sup>-</sup>             | 2)                                                                           |
|     | (1)                   | 16.3                                 | (2)                         | 110.8                                      | (3)             | 3.5                                       | (4)                              | 5.9                                                                          |
| 25. | In a re               | gion, the potent                     | ial is repr                 | resented by V(x                            | (y,z) = 6x      | x - 8xy - 8y + 6y                         | yz, wher                         | e V is in volts and x, y,                                                    |
|     |                       | 24  N                                |                             | $\frac{1}{25}$ N                           | (3)             | $\frac{6}{5}$ N                           | (1)                              | $\begin{array}{c} \text{a at point (1, 1, 1) is} \\ \text{20 N} \end{array}$ |
|     | (1)                   | 24 IN                                | (2)                         | 4733 IN                                    | (3)             | OV 3 IN                                   | (4)                              | 30 N                                                                         |
| 26. | Hydro                 | gen atom in gro                      | ound state                  | e is excited by                            | a monoc         | hromatic radiat                           | ion of λ                         | = 975 Å. Number of                                                           |
|     | (1)                   | 6                                    | (2)                         | 10                                         | (3)             | 3                                         | (4)                              | 2                                                                            |
| 27. | The ba                | arrier potential o                   | of a p–n ju                 | unction depends                            | s on:           |                                           |                                  |                                                                              |
|     | (a)                   | type of semi c                       | conductor                   | material (b)                               | amoun           | t of doping                               |                                  |                                                                              |
|     | (c)                   | temperature                          |                             | 49                                         |                 |                                           |                                  |                                                                              |
|     | (1)                   | (b) and (c) on                       | owing is (<br>lv <b>(2)</b> | (a). (b) and (c                            | ) (3)           | (a) and (b) on                            | lv (4)                           | (b) only                                                                     |
| 28. | If n <sub>1</sub> , r | $n_2$ and $n_3$ are the              | e fundame                   | ental frequencie                           | es of thre      | e segments into                           | which a                          | string is divided, then                                                      |
|     | the ori               | ginal fundamen                       | tal freque                  | ency n of the str                          | ing is giv      | en by:                                    | -                                | <u> </u>                                                                     |
|     | (1)                   | $\sqrt{n} = \sqrt{n_1} + \sqrt{n_1}$ | $\sqrt{n_2} + \sqrt{n_3}$   | 3                                          | (2)             | $n = n_1 + n_2 + n_3$                     | 13                               |                                                                              |
|     |                       |                                      |                             |                                            |                 |                                           |                                  |                                                                              |

(3) 
$$\frac{1}{n} = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}$$
 (4)  $\frac{1}{\sqrt{n}} = \frac{1}{\sqrt{n_1}} + \frac{1}{\sqrt{n_2}} + \frac{1}{\sqrt{n_3}}$ 

29. If force (F), velocity (V) and time (T) are taken as fundamental units, then the dimensions of mass are

(1) 
$$[FV^{-1}T^{-1}]$$
 (2)  $[FV^{-1}T]$  (3)  $[FVT^{-1}]$  (4)  $[FVT^{-2}]$ 

- **30.** If the focal length of objective lens is increased then magnifying power of:
  - (1) microscope and telescope both will decrease.
  - (2) microscope will decrease but that of telescope will increase.
  - (3) microscope will increase but that of telescope decrease.
  - (4) microscope and telescope both will increase.
- **31.** A potentiometer circuit has been set up for finding the internal resistance of a given cell. The main battery, used across the potentiometer wire, has an emf of 2.0 V and a negligible internal resistance. The potentiometer wire itself is 4 m long. When the resistance, R, connected across the given cell, has values of

(i) infinity (ii) 
$$9.5 \Omega$$

the 'balancing lengths', on the potentiometer wire are found to be 3 m and 2.85 m, respectively. The value of internal resistance of the cell is :

(1)  $0.5 \Omega$  (2)  $0.75 \Omega$  (3)  $0.25 \Omega$  (4)  $0.95 \Omega$ 

**32.** Copper of fixed volume 'V' is drawn into wire of length '*l*'. When this wire is subjected to a constant force 'F', the extension produced in the wire is 'A*l*'. Which of the following graphs is a straight line?

- (1)  $\Delta l$  versus  $1/l^2$  (2)  $\Delta l$  versus l (3)  $\Delta l$  versus 1/l (4)  $\Delta l$  versus  $l^2$
- **33.** Two identical long conducting wires AOB and COD are placed at right angle to each other, with one above other such that 'O' is their common point for the two. The wires carry I<sub>1</sub> and I<sub>2</sub> currents, respectively. Point 'P' is lying at distance 'd' from 'O' along a direction perpendicular to the plane containing the Wires. The magnetic field at the point 'P' will be :

(1) 
$$\frac{\mu_0}{2\pi d} (I_1^2 - I_2^2)$$
 (2)  $\frac{\mu_0}{2\pi d} (I_1^2 + I_2^2)^{1/2}$  (3)  $\frac{\mu_0}{2\pi d} (I_1 / I_2)$  (4)  $\frac{\mu_0}{2\pi d} (I_1 + I_2)$ 

34. Two thin dielectric slabs of dielectric constants  $K_1$  and  $K_2$  ( $K_1 < K_2$ ) are inserted between plates of a parallel plate capacitor, as shown in the figure. The variation of electric field 'E' between the plates with distance 'd' as measured from plate P is correctly shown by:



- **35.** The number of possible natural oscillations of air column in a pipe closed at one end of length 85 cm whose frequencies lie below 1250 Hz are: (velocity of sound =  $340 \text{ ms}^{-1}$ ) (1) 7 (2) 6 (3) 4 (4) 5
- **36.** A thermodynamic system undergoes cyclic process ABCDA as shown in Fig. The work done by the system in the cycle is :



**40.** A conducting sphere of radius R is given a charge Q. The electric potential and the electric field at the centre of the sphere respectively are :



**41.** A body of mass (4m) is lying in x-y plane at rest. It suddenly explodes into three pieces. Two pieces, each of mass (m) move perpendicular to each other with equal speeds (U). The total kinetic energy generated due to explosion is:

(1) 
$$2 \text{ mv}^2$$
 (2)  $4 \text{ mv}^2$  (3)  $\text{mv}^2$  (4)  $\frac{3}{2} \text{mv}^2$ 

**42.** The force 'F' acting on a particle of mass 'm' is indicated by the force–time graph shown below. The change in momentum of the particle over the time interval from zero to 8 s is:



**43.** A speeding motorcyclist sees traffic jam ahead of him. He slows down to 36 km/ hour. He finds that traffic has eased and a car moving ahead of him at 18 km/ hour is honking at a frequency of 1392 Hz. If the speed of sound is 343 m/ s, the frequency of the honk as heard by him will be :

44. A certain number of spherical drops of a liquid of radius 'r' coalesce to form a single drop of radius 'R' and volume 'V'. If 'T' is the surface tension of the liquid then :

(1) energy = 
$$3VT\left(\frac{1}{r} - \frac{1}{R}\right)$$
 is released (2) energy is neither released nor absorbed

(3) energy = 
$$4VT\left(\frac{1}{r} - \frac{1}{R}\right)$$
 is released (4) energy =  $3VT\left(\frac{1}{r} + \frac{1}{R}\right)$  is absorbed

45. The given graph represents V – I characteristic for a semiconductor device.



Which of the following statement is correct?

- (1) It is for a photodiode and points A and B represent open circuit voltage and current, respectively.
- (2) It is for a LED and points A and B represent open circuit voltage and shor circuit current, respectively.
- (3) It is V I characteristic for solar cell where, point A represent open circuit voltage and point B short circuit current.
- (4) It is for a solar cell and points A and B represent open circuit voltage and current, respectively.

| SEC | TION -                         | II (BIOLOGY)                                                                                                                                                                                     |                            |                                      |                    |                                                                                           |                      |                | 360 MARKS               |
|-----|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------|--------------------|-------------------------------------------------------------------------------------------|----------------------|----------------|-------------------------|
| 46. | Planar<br>(1)<br>(3)           | <i>ia</i> possess high c<br>alternation of g<br>metamorphosis                                                                                                                                    | capacity<br>generatic<br>s | of:<br>on                            |                    | (2)<br>(4)                                                                                | biolumin<br>regenera | lescen<br>tion | ce                      |
| 47. | An exa                         | ample of <i>ex situ</i><br>Wildlife Sanct                                                                                                                                                        | conserva                   | tion is                              | ( <b>2</b> )       | Sacrad                                                                                    | Grove                |                |                         |
|     | (1)<br>(3)                     | National Park                                                                                                                                                                                    |                            |                                      | (2)<br>(4)         | Seed Bank                                                                                 |                      |                |                         |
| 48. | To obt<br>of the<br>(1)<br>(3) | <ul> <li>To obtain virus - free healthy plants from a disc<br/>of the diseased plant will be taken?</li> <li>(1) Both apical and axillary meristems</li> <li>(3) Apical meristem only</li> </ul> |                            |                                      |                    | e by tissue culture technique, which part/ parts<br>Epidermis only<br>Palisade parenchyma |                      |                | ique, which part/ parts |
| 49. | The m                          | otile bacteria are                                                                                                                                                                               | e able to                  | move by:                             |                    |                                                                                           | Î                    | -              |                         |
|     | (1)                            | cilia                                                                                                                                                                                            | (2)                        | pili                                 | (3)                | fimbria                                                                                   | le                   | (4)            | flagella                |
| 50. | A mar                          | ine cartilaginous                                                                                                                                                                                | fish tha                   | t can produce el                     | ectric cu          | rrent is:                                                                                 |                      |                |                         |
|     | (1)                            | Trygon                                                                                                                                                                                           | (2)                        | Scoliodon                            | (3)                | Pristis                                                                                   | (                    | (4)            | Torpedo                 |
| 51. | You as<br>structu              | re given a fairly<br>res will you use                                                                                                                                                            | v old pie<br>to distin     | ce of dicot stem<br>guish between t  | and a one the two? | dicot roo                                                                                 | t. Which             | of the         | following anatomical    |
|     | (1)                            | Protoxylem                                                                                                                                                                                       | (2)                        | Cortical cells                       | (3)                | Second                                                                                    | ary xylen            | n(4)           | Secondary phloem        |
| 52. | In a po<br>Based               | pulation of 1000<br>on this data, the                                                                                                                                                            | ) individ<br>frequen       | uals 360 belong<br>cy of allele A in | to genoty          | ype AA, 4<br>ulation:                                                                     | 480 to Aa            | and th         | e remaining 160 to aa.  |

|     | (1)                                                          | 0.6                | (2)        | 0.7                                                 | (3)                                                   | 0.4                    | (4)       | 0.5                    |  |
|-----|--------------------------------------------------------------|--------------------|------------|-----------------------------------------------------|-------------------------------------------------------|------------------------|-----------|------------------------|--|
| 53. | Fructos                                                      | e is absorbed int  | to the blo | ood through muc                                     | osa cell                                              | s of intestine by      | the proc  | ess called:            |  |
|     | (1)                                                          | simple diffusion   | n          |                                                     | (2)                                                   | co-transport me        | chanism   | 1                      |  |
|     | (3)                                                          | active transport   |            |                                                     | (4)                                                   | facilitated trans      | port      |                        |  |
| 54. | Which                                                        | of the following   | causes a   | in increase in so                                   | (2) Decreases in antidiuratic hormona levels          |                        |           |                        |  |
|     | (1)                                                          | Increase in aldo   | osterone   | levels                                              | (2)                                                   | Increase in anti       | diuretic  | hormone levels         |  |
| 55. | A few 1                                                      | normal seedlings   | of toma    | to were kept in a                                   | a dark room. After a few days they were found to have |                        |           |                        |  |
|     | become                                                       | white-coloured     | like alb   | ionos. Which of                                     | the follo                                             | wing terms will        | you use   | to describe them ?     |  |
|     | (1)                                                          | Etiolated          | (2)        | Defoliated                                          | (3)                                                   | Mutated                | (4)       | Embolised              |  |
| 56. | Stimula                                                      | tion of a muscle   | fiber by   | a motor neuron                                      | occurs                                                | at:                    |           |                        |  |
|     | (1)                                                          | the myofibril      | lor juno   | tion                                                | (2)<br>(4)                                            | the transverse tubules |           |                        |  |
| 57  | (J)<br>In vitro                                              | alonal propagat    | ion is ob  | are storized by:                                    | (4)                                                   | the transverse t       | ubules    |                        |  |
| 57. | (1)                                                          | Electrophoresis    | and HP     | LC                                                  | (2)                                                   | Microscopy             |           |                        |  |
|     | (3) PCR and RAPD                                             |                    |            |                                                     | (4)                                                   | Northern blottin       | ıg        | 2                      |  |
| 58. | Deficie                                                      | ncy symptoms o     | f nitroge  | n and potassium                                     | n are visi                                            | ble first in:          |           | 0                      |  |
|     | (1)                                                          | Roots              | (2)        | Buds                                                | (3)                                                   | Senescent leave        | es(4)     | Young leaves           |  |
| 59. | Fight-o                                                      | r-flight reactions | s cause a  | ctivation of:                                       |                                                       |                        | 5         |                        |  |
|     | (1)                                                          | the adrenal med    | lulla, lea | ding to increase                                    | d secreti                                             | on of epinephrin       | e and no  | prepinephrene.         |  |
|     | (2)<br>(3)                                                   | the parathyroid    | glands     | a reduction in the                                  | e blood<br>ised met                                   | abolic rate            |           |                        |  |
|     | (4)                                                          | the kidney, lead   | ling to s  | uppression of ren                                   | nin-ang                                               | iotensin-aldoster      | one patl  | hway.                  |  |
| 60. | If 20J o                                                     | f energy is trapp  | ed at pro  | ducer level, ther                                   | how mu                                                | uch energy will b      | e availa  | ble to peacock as food |  |
|     | in the f                                                     | ollowing chain?    |            |                                                     | 4,                                                    |                        |           |                        |  |
|     | (1)                                                          | 0.21               | pl         | ant $\rightarrow$ mice $\rightarrow$ si<br>0.0002 I | nake $\rightarrow$                                    | peacock                | (4)       | 0.002 1                |  |
|     |                                                              | 0.23               | (2)        | 0.0002.3                                            | (3)                                                   | 0.02 5                 | (+)       | 0.002 3                |  |
| 61. | Male ga                                                      | ametophyte 'Wit    | th least r | Pinus                                               | s present                                             | t 1n:<br>Dtoris        | (4)       | Funariu                |  |
| 67  |                                                              | bor in the exhau   | (2)        | 1 mus                                               | (J)                                                   | removes:               | (4)       | runariu                |  |
| 02. | (1)                                                          | gases like ozon    | e and me   | ethane                                              | ai piani i                                            | lemoves.               |           |                        |  |
|     | (2)                                                          | particulate matt   | er of the  | size 2.5 micron                                     | neter or l                                            | ess                    |           |                        |  |
|     | (3)                                                          | gases like sulph   | ur dioxi   | de                                                  |                                                       |                        |           |                        |  |
|     | (4)                                                          | particulate matt   | er of the  | size 5 microme                                      | ter or ab                                             | ove                    |           |                        |  |
| 63. | Fruit co                                                     | olour in squash is | s an exai  | nple of                                             | ( <b>2</b> )                                          | Lubibitany and         | ~         |                        |  |
|     | (1)<br>(3)                                                   | Recessive epis     | tasis      |                                                     | (2)                                                   | Dominant epist         | s<br>asis |                        |  |
| 64. | A locat                                                      | ion with luxuria   | nt growt   | h of lichens on t                                   | he trees                                              | indicates that the     |           |                        |  |
|     | (1)                                                          | location is high   | ly pollut  | ed                                                  | (2)                                                   | location is not p      | olluted   |                        |  |
|     | (3)                                                          | trees are very h   | ealthy     |                                                     | (4)                                                   | trees are heavil       | y infeste | d                      |  |
| 65. | At which                                                     | ch stage of HIV    | infectior  | does one usuall                                     | y show                                                | symptoms of All        | DS?       |                        |  |
|     | (1)                                                          | When HIV dam       | nages lar  | ge number of he                                     | lper T -                                              | Lymphocytes.           |           |                        |  |
|     | (2) When the viral DNA is produced by reverse transcriptase. |                    |            |                                                     |                                                       |                        |           |                        |  |

MENIIT

(3) Within 15 days of sexual contact with an infected person.

|     | (4) When the infected retro virus enters he                                                                | ost cells.     |                 |                   |                           |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------|----------------|-----------------|-------------------|---------------------------|--|--|--|--|
| 66. | The first human hormone produced by recomb                                                                 | inant DN       | A technolog     | y is:             |                           |  |  |  |  |
|     | (1) Thyroxin (2) Progesterone                                                                              | (3)            | Insulin         | (4)               | Estrogen                  |  |  |  |  |
| 67. | The main function of mammalian' corpus luteu                                                               | um is to p     | oroduce:        |                   |                           |  |  |  |  |
|     | (1) human chorionic gonadotropin                                                                           | (2)            | relaxin only    | y                 |                           |  |  |  |  |
|     | (3) estrogen only                                                                                          | (4)            | progesteror     | ne                |                           |  |  |  |  |
| 68. | In which one of the following processes CO <sub>2</sub> i                                                  | s not rele     | ased?           |                   |                           |  |  |  |  |
|     | (1) Alcoholic fermentation                                                                                 | (2)            | Lactate fer     | mentation         |                           |  |  |  |  |
|     | (3) Aerobic respiration in plants                                                                          | (4)            | Aerobic res     | spiration in      | animals                   |  |  |  |  |
| 69. | The zone of atmosphere in which the ozone la                                                               | yer is pre     | sent is called  |                   |                           |  |  |  |  |
|     | (1) Stratosphere (2) Troposphere                                                                           | (3)            | Ionosphere      | (4)               | Mesosphere                |  |  |  |  |
| 70. | Transformation was discovered by                                                                           |                |                 |                   |                           |  |  |  |  |
|     | (1) Griffith                                                                                               | (2)            | Watson and      | d Crick           |                           |  |  |  |  |
|     | (3) Meselson and Stahl                                                                                     | (4)            | Hershey an      | d Chase           |                           |  |  |  |  |
| 71. | Select the option which is not correct with resp                                                           | pect to en     | zyme action     | :                 |                           |  |  |  |  |
|     | (1) A non - competitive inhibitor binds the enzyme at a site distinct from that which binds the substrate. |                |                 |                   |                           |  |  |  |  |
|     | (2) Malonate is a competitive inhibitor of                                                                 | succinic       | dehydrogena     | se.               |                           |  |  |  |  |
|     | (3) Substrate binds with enzyme at its active site                                                         |                |                 |                   |                           |  |  |  |  |
|     | (4) Addition of lot of succinate does no                                                                   | t reverse      | the inhibiti    | on of succ        | inic dehydrogenase by     |  |  |  |  |
|     | malonate.                                                                                                  |                |                 | 2                 |                           |  |  |  |  |
| 72. | 2. Which one of the following is <b>wrongly</b> matched?                                                   |                |                 |                   |                           |  |  |  |  |
|     | (1) Repressor protein - Binds to operator t                                                                | o stop en      | zyme synthe     | sis.              |                           |  |  |  |  |
|     | (2) Operon - Structural genes, operator an                                                                 | d promot       | er              |                   |                           |  |  |  |  |
|     | (3) Transcription - Writing information fr                                                                 | om DNA         | to t-RNA.       |                   |                           |  |  |  |  |
|     | (4) Translation - Using information in m-                                                                  | RNA to n       | nake protein.   |                   |                           |  |  |  |  |
| 73. | Which one of the following statements is not c                                                             | correct?       |                 |                   |                           |  |  |  |  |
|     | (1) Retinal is a derivative of Vitamin C.                                                                  | , <b>.</b>     |                 |                   |                           |  |  |  |  |
|     | (2) Rhodopsin is the purplish red protein j                                                                | present in     | i rods only.    | 4.5               |                           |  |  |  |  |
|     | (3) Retinal is the light absorbing portion (                                                               | n visual j     | rhodonsin y     | ls.<br>hile cones | , have three different    |  |  |  |  |
|     | nhotonigments                                                                                              | ngment         | modopsin w      |                   | s have three different    |  |  |  |  |
| 74  | During which phases of each call evola amo                                                                 | unt of D       | NA in a cell    | romains           | t AC level if the initial |  |  |  |  |
| /4. | amount is denoted as 2C?                                                                                   | unit of D      |                 | i cilialiis a     |                           |  |  |  |  |
|     | (1) Only $G_2$ (2) $G_2$ and M                                                                             | (3)            | $G_0$ and $G_1$ | (4)               | G <sub>1</sub> and S      |  |  |  |  |
| 75. | Non-albuminous seed is produced in:                                                                        | (-)            | 00              |                   | 01.000                    |  |  |  |  |
| ,   | (1) Wheat (2) Pea                                                                                          | (3)            | Maize           | (4)               | Castor                    |  |  |  |  |
| 76. | Select the Taxon mentioned that represents ma                                                              | rine and       | fresh water s   | pecies:           |                           |  |  |  |  |
|     | (1) Cephalochordate(2) Cnidaria                                                                            | (3)            | Echinoderr      | ns (4)            | Ctenophora                |  |  |  |  |
| 77. | Five kingdom system of classification suggest                                                              | ed by R.H      | I. Whittaker    | is not based      | d on:                     |  |  |  |  |
|     | (1) Mode of nutrition                                                                                      | (2)            | Complexity      | of body o         | rganization               |  |  |  |  |
|     | (3) Presence or absence of a well defined                                                                  | nucleus        |                 |                   |                           |  |  |  |  |
| 79  | (4) Wode of reproduction<br>Select the correct option:                                                     |                |                 |                   |                           |  |  |  |  |
| /0. | Direction of Direction of                                                                                  | rooding (      | of the          |                   |                           |  |  |  |  |
|     | RNA synthesis template D                                                                                   | <u>NA stra</u> | nd              |                   |                           |  |  |  |  |

MENIIT

| (1) | 5'3' | 5'3' |
|-----|------|------|
| (2) | 3'5' | 3'5' |
| (3) | 5'3' | 3'5' |
| (4) | 5'3' | 5'3' |

**79.** Given below is the representation of the extent of global diversity of invertebrates. What groups the four portions (A-D) represent respectively?



#### **Options:**

|     | А           | В                   | С                   | D                   |
|-----|-------------|---------------------|---------------------|---------------------|
| (1) | Molluses    | Other animal groups | Crustaceans         | Insects             |
| (2) | Insects     | Molluscs            | Crustaceans         | Other animal groups |
| (3) | Insects     | Crustaceans         | Other animal groups | Molluscs            |
| (4) | Crustaceans | Insects             | Molluscs            | Other animal groups |

80. An analysis of chromosomal DNA using the Southern hybridization technique does not use:
 (1) Autoradiography
 (2) PCR
 (3) Electrophoresis
 (4) Blotting

**81.** Which is the particular type of drug that is obtained from the plant whose one flowering branch is shown below?



- (1) Stimulant (2) Pain-killer (3) Hallucinogen (4) Depressant
- 82. Assisted reproductive technology, of involves transfer of:
  - (1) Zygote into the uterus
  - (2) Embryo with 16 blastomeres into the fallopian tube.
  - (3) Ovum into the fallopian tube. (4) Zygote into the fallopian tube
- **83.** Which of the following is responsible for peat formation?
  - (1) Funaria (2) Sphagnum (3) Marcljantia (4) Riccia
- 84. Select the correct option describing gonadotropin activity in a normal pregnant female:
  - (1) High level of hCG stimulates the synthesis of estrogen and progesterone.
  - (2) High level of hCG stimulates the thickening of endometrium.
  - (3) High level of FSH and LH stimulates the thickening of endometrium.
  - (4) High level of FSH and LH facilitate implantation of the embryo.
- **85.** Tubectomy is a method of sterilization in which:
  - (1) small part of vas deferens is removed or tied up.
  - (2) uterus is removed surgically
  - (3) small part of the fallopian tube is removed or tied up.
  - (4) ovaries are removed surgically.
- **86.** Dr. F. Went noted that if coleoptile tips were removed and placed on agar for one hour, the agar would produce a bending when placed on one side of freshly-cut coleoptiles stumps. Of what significance is this experiment?

96.

Viruses have:

LNG - 20

- (1) It supports the hypothesis that IAA is auxin.
- (2) It demonstrated polar movement of auxins.
- (3) It made possible the isolation and exact identification of auxin.
- (4) It is the basis for quantitative determination of small amounts of growth-promoting substances.
- 87. Person with blood group AB is considered as universal recipient because he has:
  - (1) no antigen on RBC and no antibody in the plasma.
  - (2) both A and B antigens in the plasma but no antibodies.
  - (3) both A and B antigens on RBC but no antibodies in the plasma.
  - (4) both A and B antibodies in the plasma.
- **88.** Function of filiform apparatus is to:
  - (1) Produce nectar (2) Guide the entry of pollen tube
  - (3) Recognize the suitable pollen at stigma (4) Stimulate division of generative cell
- **89.** Injury localized to the hypothalamus would most likely disrupt:
  - (1) executive functions, such as decision making.
  - (2) regulation of body temperature.
  - (3) short term memory.
  - (4) co-ordination during locomotion.

**90.** Which one of the following living organisms completely *lacks* a cell wall?

- (1) Saccharomyces (2) Blue green algae
- (3)Cyanobacteria(4)Sea fan (Gorgmiia)
- 91. Which of the following is a hormone releasing Intra Uterine Device (IUD)?
  - (1) Cervical cap (2) Vault (3) Multiload 375 (4)
- 92. Archaebacteriadiffer from eubacteria in:
  - (1) Cell shape (2) Mode of reproduction
  - (3) Cell membrane structure (4) Mode of nutrition

# **93.** Tracheids differ from other tracheary elements in:

- (1) lacking nucleus (2) being lignified
- (3) having casparign strips (4) being imperforate
- 94. Which one of the following shows isogamy with non-flagellated gametes?
  (1) Ulothrix
  (2) Spirogyra
  (3) Sargassum
  (4) Ectocarpus
- **95.** A species facing extremely high risk of extinction the immediate figure is called:
- (1) Critically Endangered (2) Extinct
  - (3) Vulnerable (4) Endemic
  - (1) Single chromosome (2) Both DNA and RNA as
  - (3) DNA enclosed in a protein coat (4) Prokaryotic nucleus
- **97.** Anoxygenic photosynthesis is characteristic of:
  - (1) Chlamydomonas (2) Ulva (3) Rhodospirillum (4) Spirogyra
- **98.** Commonly used vectors for human genome sequencing are:
  - (1) Expression Vectors (2) T/ A Cloning Vectors
  - (3) T-DNA A (4) BAC and YAC

## **99.** Which one of the following fungi contain hallucinogens?

- (1)Neurospora sp.(2)Ustilago sp.
- (3) Morchellaesculenta (4) Amamitamuscaria
- Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

NEET: 2014 | Paper CODE: S

| 100.  | Which structures perform                         | n the function of mit  | ochondria in bacte    | ria?                  |                            |
|-------|--------------------------------------------------|------------------------|-----------------------|-----------------------|----------------------------|
|       | (1) Cell wall                                    | (2) Mesosomes          | (3) Nucle             | oid (4)               | Ribosomes                  |
| 101.  | In 'S' phase of the cell cy                      | cle:                   |                       |                       |                            |
|       | (1) chromosome num                               | nber is increased.     | (2) amour             | nt of DNA is red      | uced to-half in each cell. |
|       | (3) amount of DNA                                | doubles in each cell   | . <b>(4)</b> amour    | nt of DNA rema        | ains same in each cell.    |
| 102.  | When the margins of sep                          | als or petals overlap  | one another without   | ut any particula      | r direction, the condition |
|       | is termed as:                                    |                        |                       | ~ 1                   |                            |
|       | (1) Twisted                                      | (2) Valvate            | (3) Vexill            | ary <b>(4)</b>        | Imbricate                  |
| 103.  | A man whose father was                           | s colourblined marri   | ies a woman who       | had a colour b        | lind mother and normal     |
|       | father. What percentage                          | of male children of t  | his couple will be    | colour blind?         |                            |
|       | (1) 50%                                          | (2) 75%                | (3) 25%               | (4)                   | 0%                         |
| 104   | Which one of the follow                          | ng is a non-reducing   | carbohydrate?         |                       |                            |
| 10 11 | (1) Lactose                                      |                        | (2) Ribos             | e 5-phosphate         |                            |
|       | (3) Maltose                                      |                        | $(4) \qquad Sucros$   | se                    |                            |
| 105   | Earolimba of oot lizerdy                         | used in wellting: for  | alimba of whole w     | ad in avvinancia      | a and forelimber of hote   |
| 103.  | rorennings of cat, fizard                        | note of male of        | ennios or whate us    | sed in Swimmin        | ig and forentillos of bats |
|       | (1) Homologous org                               | ans                    | (2) Conve             | rgent evolution       |                            |
|       | (3) Analgous organs                              | uns                    | (4) Adapt             | ive radiation         |                            |
| 107   | Which are a falle fallered                       |                        | (1) 1100001           | ive fudiation         |                            |
| 100.  | which one of the following $(1)$ A protoinageous | alaurana laurar is ar  | rect?                 |                       |                            |
|       | (1) A proteinaceous<br>(2) A sterile pistil is   | called a staminode     | esent in maize gran   | μ.                    |                            |
|       | (2) A sterile pistilis<br>(3) The seed in grass  | ses is not endosperm   | ic (4) Mang           | a is a parthenoc      | earnic fruit               |
| 105   |                                                  |                        | ite. (4) Ivialige     | o is a partitende     |                            |
| 107.  | Pollen tablets are availab                       | le in the market for:  |                       |                       |                            |
|       | (1) Supplementing I<br>(3) In vitro fortilizat   | ood                    | (2) Ex sin            | <i>i</i> conservation | a                          |
|       | (3) In vitro iertilizat                          | ion                    | (4) Breed             | ing programme         | 8                          |
| 108.  | Given below is a simplifi                        | ed model of phospho    | orus cycling in a ter | rrestrial ecosyst     | em with four blanks (A-    |
|       | D). Identify the blanks.                         |                        |                       |                       |                            |
|       | Consumers -                                      | С                      |                       |                       |                            |
|       |                                                  |                        |                       |                       |                            |
|       |                                                  |                        |                       |                       |                            |
|       |                                                  |                        |                       |                       |                            |
|       | Soil solution Uptak                              | ie                     |                       |                       |                            |
|       | Run                                              | off                    |                       |                       |                            |
|       |                                                  |                        |                       |                       |                            |
|       |                                                  |                        |                       | 11                    |                            |
|       | A<br>(1) Detaiters                               | B<br>De els universals | C                     | D                     |                            |
|       | (1) Detritus<br>(2) Producers                    | Litter fall            | Rock minerals         | Detritus              |                            |
|       | (3) Rock minerals                                | Detritus               | Litter fall           | Producers             |                            |
|       | (4) Litter fall                                  | Producers              | Rock minerals         | Detritus              |                            |
| 109.  | Match the following and                          | select the correct an  | nswer:                |                       |                            |
|       | (a) Centriole                                    | (i)                    | Infloldings in        | mitochondria          |                            |
|       | (b) Chlorophyll                                  | (ii)                   | Thylakoids            |                       |                            |
|       | (c) Cristate                                     | (iii)                  | Nucleic acids         |                       |                            |
|       | (d) Ribozymes                                    | (iv)                   | Basal body cil        | ia or flagella        |                            |
|       | (a) (b)                                          | (c) (d)                |                       |                       |                            |

MENIIT

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

|      | (1)                      | (i)                              | (iii)                                       | (ii)                                          | (iv)                                         |                                              |                          |                                  |                     |                             |  |
|------|--------------------------|----------------------------------|---------------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------|----------------------------------|---------------------|-----------------------------|--|
|      | (2)                      | (iv)                             | (iii)                                       | (i)                                           | (ii)                                         |                                              |                          |                                  |                     |                             |  |
|      | (3)                      | (iv)                             | (ii)                                        | (i)                                           | (iii)                                        |                                              |                          |                                  |                     |                             |  |
|      | (4)                      | (i)                              | (ii)                                        | (iv)                                          | (iii)                                        |                                              |                          |                                  |                     |                             |  |
| 110. | Which                    | one of                           | the follo                                   | wing is                                       | wrong a                                      | about <i>Ch</i>                              | ara?                     |                                  |                     |                             |  |
|      | (1)<br>(2)<br>(3)<br>(4) | Upper<br>Globu<br>Upper<br>Globu | antherio<br>le is ma<br>oogoniu<br>le and n | dium and<br>le reprod<br>um and l<br>ucule pr | d lower<br>ductive s<br>lower ro<br>esent on | oogoniur<br>structure<br>und anth<br>the sam | n<br>eridium<br>e plant. |                                  |                     |                             |  |
| 111. | The in                   | itial step                       | o in the o                                  | digestior                                     | n of milk                                    | x in huma                                    | ans is cai               | rried out by?                    |                     |                             |  |
|      | (1)                      | Renni                            | n                                           | (2)                                           | Pepsi                                        | n                                            | (3)                      | Lipase                           | (4)                 | Trypsin                     |  |
| 112. | The sh<br>(1)            | nared ter<br>Vas de              | minal du<br>eferens                         | uct of the (2)                                | e reprod<br>Vasa                             | uctive ar<br>efferenti                       | nd urinar<br>a (3)       | y system in the l<br>Urethra     | numan r<br>(4)      | nale is:<br>Ureter          |  |
| 113. | An ex                    | ample of                         | fedible                                     | undergro                                      | ound ste                                     | m is:                                        |                          |                                  |                     |                             |  |
|      | (1)                      | Sweet                            | potato                                      | (2)                                           | Potate                                       | )                                            | (3)                      | Carrot                           | (4)                 | Groundnut                   |  |
| 114. | An ag                    | gregate t                        | fruit is o                                  | ne whic                                       | h develo                                     | ops from:                                    |                          |                                  |                     |                             |  |
|      | (1)<br>(3)               | Comp<br>Multic                   | lete infle<br>carpellea                     | orescenc                                      | e<br>rpousgy                                 | noeciiun                                     | (2)<br>n(4)              | Multicarpellar<br>Multicarpellar | y superi<br>yapocai | ior ovary<br>rpus gynoecium |  |
| 115. | Which                    | n one of                         | the follo                                   | wing gr                                       | owth reg                                     | gulators i                                   | s known                  | as 'stress horm                  | one'?               |                             |  |
|      | (1)                      | GA <sub>3</sub>                  |                                             |                                               |                                              |                                              | (2)                      | Indole acetic a                  | icid                |                             |  |
|      | (3)                      | Abscis                           | ssic acid                                   | l                                             |                                              |                                              | (4)                      | Ethylene                         | O <sup>v</sup>      |                             |  |
| 116. | Which                    | n of the f                       | followin                                    | g shows                                       | coiled F                                     | RNA stra                                     | nd and c                 | apsomeres?                       |                     |                             |  |
|      | (1)                      | Measl                            | es virus                                    | C                                             |                                              |                                              | (2)                      | Retrovirus                       |                     |                             |  |
|      | (3)                      | Polio                            | virus                                       |                                               |                                              |                                              | (4)                      | Tobacco mosa                     | ic virus            |                             |  |
| 117. | An alg                   | a which                          | can be                                      | employe                                       | ed as foc                                    | d for hu                                     | man beir                 | ng is:                           |                     |                             |  |
|      | (1)                      | Spirog                           | gyra                                        | (2)                                           | Polys                                        | iphonia                                      | (3)                      | Ulothrix                         | (4)                 | Chlorella                   |  |
| 118  | Choos                    | e the co                         | rrectly n                                   | natched                                       | nair <sup>.</sup>                            |                                              | Ľ,                       |                                  |                     |                             |  |
| 110. | (1)                      | Areola                           | ar tissue                                   | – Loose                                       | connec                                       | tive tissu                                   | ue( <b>2</b> )           | Cartilage – Lo                   | ose con             | nective tissue              |  |
|      | (3)                      | Tendo                            | on – Spe                                    | cialized                                      | connect                                      | ive tissue                                   | e(4)                     | Adipose tissue                   | e – Dens            | se connective tissue        |  |
| 110  | Which                    | one of                           | the follo                                   | wing ar                                       | e analog                                     | oue etruc                                    | tures?                   | 1                                |                     |                             |  |
| 117. | (1)                      | Thorn                            | s of <i>Bou</i>                             | gainvill                                      | ea and T                                     | endr4ils                                     | of <i>Cucu</i>           | rhita                            |                     |                             |  |
|      | (1)                      | Flippe                           | ers of Do                                   | olohin ar                                     | nd Legs                                      | of Horse                                     | 01 01/01                 |                                  |                     |                             |  |
|      | (3)                      | Wings                            | of Bat                                      | and Win                                       | gs of Pi                                     | geon.                                        | (4)                      | Gills of Prawn                   | and Lu              | ings of Man.                |  |
| 120. | Appro                    | ximately                         | seventv                                     | percent                                       | of carbo                                     | -<br>n-dooxid                                | e absorb                 | ed by the blood y                | vill be tr          | ansported to the lungs.     |  |
| 1200 | (1)                      | bv bin                           | ding to                                     | R.B.C.                                        | or curee                                     | ii uooniu                                    | (2)                      | - ascarbamino                    | - haemo             | globin                      |  |
|      | (3)                      | as bica                          | arbonate                                    | ions                                          |                                              |                                              | (4)                      | in the form of                   | dissolv             | ed gas molecules            |  |
| 121. | The os                   | smotic e                         | xpansio                                     | n of a ce                                     | ll kept i                                    | n water i                                    | s chiefly                | regulated by:                    |                     |                             |  |
|      | (1)                      | Plastic                          | ds                                          | (2)                                           | Ribos                                        | omes                                         | (3)                      | Mitochondria                     | (4)                 | Vacuoles                    |  |
| 122. | Placer                   | nta and p                        | ericarp                                     | are both                                      | edible p                                     | ortions i                                    | n:                       |                                  |                     |                             |  |
|      | (1)                      | Tomat                            | to                                          | (2)                                           | Potate                                       | )                                            | (3)                      | Apple                            | (4)                 | Banana                      |  |
| 123. | Match                    | the foll                         | owing a                                     | nd select                                     | t the <b>cor</b>                             | <b>rect</b> opti                             | ion <sup>.</sup>         |                                  |                     |                             |  |
|      | (a)                      | Earth                            | worm                                        |                                               |                                              | (i)                                          | Pionee                   | er species                       |                     |                             |  |
|      | (b)                      | Succes                           | ssion                                       |                                               |                                              | (ii)                                         | Detriti                  | vore                             |                     |                             |  |
|      | (c)                      | Ecosy                            | stem ser                                    | vice                                          |                                              | (iii)                                        | Natali                   | ty                               |                     |                             |  |
|      | (d)                      | Popula                           | ation gro                                   | owth                                          | (d)                                          | (1V)                                         | Pollina                  | ation                            |                     |                             |  |
|      | (1)                      | (iii)                            | (ii)                                        | (iv)                                          | (i)                                          |                                              |                          |                                  |                     |                             |  |

|      | (2)<br>(3) | (ii)<br>(i)            | (i)<br>(ii) | (iv)<br>(iii) | (iii)<br>(iv)   |                               |                          |             |                        |
|------|------------|------------------------|-------------|---------------|-----------------|-------------------------------|--------------------------|-------------|------------------------|
|      | (4)        | (iv)                   | (i)         | (iii)         | (ii)            |                               |                          |             |                        |
| 124. | The of     | rganizati              | on whic     | h publis      | hes the Red     | List of speci                 | es is:                   |             |                        |
|      | (1)        | UNEP                   |             | (2)           | WWF             | (3)                           | ICFRE                    | (4)         | IUCN                   |
| 125. | What       | gases are              | e produc    | ed in an      | aerobic slud    | ge digesters?                 |                          | 1 1 . 1     | 1.00                   |
|      | (1)<br>(3) | Metha                  | ne, Hyd     | rogen Si      | $\frac{11}{7}$  | $O_2$ (2) (4)                 | Hydrogen S<br>Methane, H | ulphide ai  | nd $CO_2$              |
| 10(  | (3)        | Wictila                |             | $CO_2$ only   |                 | (4)                           |                          |             |                        |
| 120. | Just a     | s a perso<br>unds of m | on movi     | ing from      | Delni to S      | nimia to esc<br>and other ext | tremely cold r           | for the di  | gions move to:         |
|      | (1)        | Corbet                 | tt Nation   | al Park       |                 | (2)                           | Keolado nat              | ional Park  |                        |
|      | (3)        | Wester                 | rn Ghat     |               |                 | (4)                           | Meghalaya                |             | -                      |
| 127. | Choos      | e the cor              | rectly n    | natched       | oair:           |                               |                          |             |                        |
|      | (1)        | Tubula                 | ar parts (  | of nephr      | ons – Cuboi     | dal epitheliu                 | m                        |             |                        |
|      | (2)        | Inner s                | surface of  | of broncl     | nioles – squa   | mous epithe                   | lium                     |             |                        |
|      | (3)        | Inner l                | ining of    | Salivary      | v ducts – Cili  | iated epitheli                | um                       |             | ~ ~                    |
|      | (4)        | Moist                  | surface     | of bucca      | I cavity – G    | landular epit                 | helium                   | •           | .0`                    |
| 128. | Geitor     | nogamy i               | involves    |               | 1 .1 11         | <b>C C</b>                    |                          |             |                        |
|      | (1)        | fortiliz               | ation of    | a flowe       | r by the poll   | en from a flo                 | flower of anothe         | r plant in  | the same population.   |
|      | (2)        | popula                 | ation 0     |               | er by the po    | iicii iioiii a                | nower of and             | uner plain  | belonging to a distant |
|      | (3)        | fertiliz               | ation of    | a flowe       | r by the poll   | en from anot                  | her flower of            | the same    | olant.                 |
|      | (4)        | fertiliz               | ation of    | a flowe       | r by the poll   | en from the s                 | same flower.             |             |                        |
| 129. | A hun      | nan fema               | le with     | Turner's      | syndrome:       |                               |                          |             |                        |
|      | (1)        | exhibit                | ts male     | characte      | rs. (2          | ) is able                     | to produce cl            | nildren wi  | h normal husband.      |
|      | (3)        | has 45                 | chrome      | osomes v      | vith XO. (4     | ) has on                      | e additional X           | C chromos   | ome.                   |
| 130. | The er     | nzyme re               | combin      | ase is re     | quired at wh    | ich state of r                | neiosis:                 |             |                        |
|      | (1)        | Diplot                 | ene         | (2)           | Diakinesis      | (3)                           | Pachytene                | (4)         | Zygotene               |
| 131. | Identi     | fy the ho              | rmone v     | with its c    | orrect match    | ning of sourc                 | e and function           | 1:          |                        |
|      | (1)        | Proges                 | sterone -   | - corpus      | -luteum, sti    | mulation of                   | growth and a             | ctivities o | f female secondary sex |
|      | (2)        | organs<br>Atrial       | natriure    | tic facto     | r – ventricul   | ar wall incre                 | ases the blood           | nressure    |                        |
|      | (2)        | Oxvto                  | cin – po    | sterior p     | ituitary, grov  | with and main                 | ntenance of m            | ammarv g    | lands.                 |
|      | (4)        | Melato                 | onin – pi   | ineal gla     | nd, regulates   | s the normal                  | rhythm of sle            | epwakes c   | ycle.                  |
| 132. | The se     | olid line              | ar cytos    | keletal e     | elements hav    | ving a diame                  | eter of 6 nm             | and made    | up of a single type of |
|      | monoi      | ner are k              | known a     | s:            |                 | -                             |                          |             |                        |
|      | (1)        | Interm                 | ediate f    | ilaments      |                 | (2)                           | Lamins                   |             |                        |
|      | (3)        | Micro                  | tubules     |               |                 | (4)                           | Microfilame              | ents        |                        |
| 133. | How c      | lo parasy              | mpathe      | tic neura     | l signals aff   | ect the work                  | ing of the hear          | rt?         |                        |
|      | (1) (2)    | Both h<br>Heart i      | eart rate   | e and car     | diac output     | increase.                     | 26                       |             |                        |
|      | (2) $(3)$  | Reduc                  | e both h    | eart rate     | and cardiac     | output.                       |                          |             |                        |
|      | (4)        | Heart                  | rate is ir  | ncreased      | without affe    | ecting the car                | diac output.             |             |                        |
| 134. | Select     | the corr               | ect mate    | ching of      | the type of the | he joint with                 | the example i            | n human s   | skeletal system:       |
|      | (1)        | Type (                 | ot joint    |               | E:              | xample                        | rus and nector           | ral oirdla  |                        |
|      | (I)        | ringe                  | յտու        |               | - 00            |                               | and pecilo               | ar griait   |                        |

|                   | (2)                                                                              | Gliding joint                        |                           | -                     | betwee                | n carpa         | ıls                                               |                    |                       |
|-------------------|----------------------------------------------------------------------------------|--------------------------------------|---------------------------|-----------------------|-----------------------|-----------------|---------------------------------------------------|--------------------|-----------------------|
|                   | (3)                                                                              | Cartilaginous j                      | oint                      | -                     | betwee                | n front         | al and parietal                                   |                    |                       |
|                   | (4)                                                                              | Pivot joint                          |                           | -                     | betwee                | n third         | and fourth cervi                                  | ical verte         | ebrae                 |
| 135.              | Which                                                                            | vector can clone                     | e only a                  | small fra             | igment o              | f DNA           | ?                                                 |                    |                       |
|                   | (1)                                                                              | Plasmid                              | 2                         |                       | 0                     | (2)             | Cosmid                                            |                    |                       |
|                   | (3)                                                                              | Bacterial artifi                     | cial chro                 | omosome               | :                     | (4)             | Yeast artificia                                   | al chrom           | osome                 |
|                   |                                                                                  |                                      |                           |                       |                       |                 |                                                   |                    |                       |
| SECT              | FION -                                                                           | III (CHEMIST                         | 'RY)                      |                       |                       |                 |                                                   |                    | 180 MARKS             |
| 136. <sup>M</sup> | Which                                                                            | of the following                     | g compo                   | unds will             | underg                | o racen         | nization when so                                  | olution of         | f KOH hydrolyses?     |
|                   |                                                                                  | CH                                   | <sub>2</sub> Cl           |                       |                       |                 |                                                   |                    |                       |
|                   | (i)                                                                              |                                      |                           |                       |                       | (ii)            | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> C | 1                  |                       |
|                   | .,                                                                               |                                      |                           |                       |                       |                 |                                                   |                    |                       |
|                   |                                                                                  |                                      |                           |                       |                       |                 | ÇH₃                                               |                    |                       |
|                   | (iii)                                                                            | CH <sub>3</sub>                      |                           |                       |                       | (iv)            |                                                   |                    |                       |
|                   |                                                                                  | H <sub>3</sub> C—ĊH-CH               | <sub>2</sub> Cl           |                       |                       | $(\mathbf{IV})$ | H CI                                              |                    |                       |
|                   | (1)                                                                              | (iii) and (iv)                       | ( <b>2</b> )              | (i) and               | (iv)                  | (3)             | $C_2H_5$                                          |                    | (ii) and (iv)         |
| 127 E             |                                                                                  | (iii) and (iv)                       | ( <b>2</b> )              |                       | (IV)                  | (5)             |                                                   | ( <del>-</del> )   |                       |
| 137.              | w nich                                                                           | AS is positive.                      | g stateme                 | ent is con            | rect for              | the spo         | ntaneous ausorp                                   | tion of a          | gas?                  |
|                   | (1)                                                                              | $\Delta S$ is positive a             | and, the                  | refore, Δi            | H should              | t be neg        |                                                   |                    |                       |
|                   | (2)                                                                              | $\Delta S$ is positive a             | and, the                  | refore, $\Delta I$    | H should              | l also b        | e highly positive                                 | e. ) '             |                       |
|                   | (3) $\Delta S$ is negative and, therefore, $\Delta H$ should be highly positive. |                                      |                           |                       |                       |                 |                                                   |                    |                       |
|                   | (4)                                                                              | $\Delta S$ is negative               | and the                   | refore, $\Delta I$    | H should              | be hig          | shly negative.                                    |                    |                       |
| 138. <sup>E</sup> | For the                                                                          | e reversible react                   | tion:                     |                       |                       |                 |                                                   |                    |                       |
|                   | $N_2(g)$                                                                         | $+ 3H_2(g) \square \square$          | 2NH <sub>3</sub> (g       | ) + heat              |                       |                 |                                                   |                    |                       |
|                   | The eq                                                                           | uilibrium shifts                     | in forwa                  | rd direct             | ion:                  | x . 11          |                                                   |                    |                       |
|                   | (1)                                                                              | by decreasing                        | the conc                  | entration             | $S OI N_2($           | g) and          | $H_2(g)$                                          |                    |                       |
|                   | (2)                                                                              | by increasing t                      | he conc                   | entration             | of NH <sub>2</sub> (  | σ)              | luie                                              |                    |                       |
|                   | (3)                                                                              | by decreasing t                      | the press                 | sure                  | OI I III (            | 6)              |                                                   |                    |                       |
| 120 E             | Using                                                                            | the Cibbe even                       | al al an ar               |                       | 16221.1               | [ for th        |                                                   | tion               |                       |
| 139.              |                                                                                  | $\log \cos \theta = \frac{1}{2}$     | y change $a^+$ (ag) $\pm$ | $-CO^{2-}$            | ⊤03.3 KJ<br>na) the K | , ioi iii       | a rollowing read                                  | or at $25^{\circ}$ | C is:                 |
|                   | $Ag_2CC$                                                                         | $\frac{214}{W^{-1}} = \frac{214}{2}$ | g (aq)                    | $CO_3$ (a             | aq) the R             | sp 01 A         | .g <sub>2</sub> CO <sub>3</sub> (s) iii wat       |                    | C 15.                 |
|                   | $(K - \delta)$ (1)                                                               | $2.9 \times 10^{-3}$                 | (2)                       | 79×1                  | $0^{-2}$              | (3)             | $3.2 \times 10^{-26}$                             | (4)                | $8.0 \times 10^{-12}$ |
| 140 E             | (-)<br>Magne                                                                     | tic moment 2 83                      | (-)                       | riven hy              | which o               | f the fo        | llowing ions?                                     | (-)                | 010 11 10             |
| 140.              | (At no                                                                           | Ti = 22 Cr = 2                       | 0.01115<br>0.01115        | = 25  Ni =            | = 28)                 |                 | nowing ions?                                      |                    |                       |
|                   | (1)                                                                              | $Cr^{3+}$                            | (2)                       | $Mn^{2+}$             | 20)                   | (3)             | Ti <sup>3+</sup>                                  | (4)                | Ni <sup>2+</sup>      |
|                   |                                                                                  |                                      |                           |                       |                       |                 |                                                   |                    |                       |
| 141. <sup>E</sup> | Which                                                                            | one of the follo                     | wing is                   | not a con             | nmon co               | mpone           | nt of Photochen                                   | nical Sm           | og?                   |
|                   | (1)                                                                              | Peroxyacetyl n                       | itrate                    |                       |                       | (2)             | Chlorofluoro                                      | carbons            |                       |
|                   | (3)                                                                              | Ozone                                |                           |                       |                       | (4)             | Acrolein                                          |                    |                       |
| 142. <sup>E</sup> | For the                                                                          | e reaction:                          |                           |                       |                       |                 |                                                   |                    |                       |
|                   | $X_2O_4(1)$                                                                      | $) \longrightarrow 2XO_2(g)$         |                           |                       |                       |                 |                                                   |                    |                       |
|                   | $\Delta U = 2$                                                                   | 2.1 k cal, $\Delta S = 2$            | 0 cal K <sup>-</sup>      | <sup>1</sup> at 300 k | K. Hence              | e, ∆G is        | 8:                                                |                    |                       |
|                   | (1)                                                                              | 9.3 kcal                             | (2)                       | –9.3 kc               | al                    | (3)             | 2.7 kcal                                          | (4)                | –2.7 kcal             |
| 143. <sup>E</sup> | Which                                                                            | one of the follo                     | wing spo                  | ecies has             | plane tri             | iangula         | r shape?                                          |                    |                       |
|                   | (1)                                                                              | $NO_2^-$                             | (2)                       | $\mathrm{CO}_2$       |                       | (3)             | $N_3^-$                                           | (4)                | $NO_3^-$              |

MENIIT



| 155. <sup>e</sup> | $Be^{2+}$ is iso-electronic with which of the follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ing ions                   | ?                                                    |                |                           |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------|----------------|---------------------------|
|                   | (1) Na <sup>+</sup> (2) Mg <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (3)                        | $\mathrm{H}^{+}$                                     | (4)            | Li <sup>+</sup>           |
| 156. <sup>E</sup> | What is the maximum number of orbitals that $n = 3$ , $\ell = 1$ and $m = 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | can be i                   | dentified with                                       | the follow     | ring quantum numbers?     |
|                   | (1) 3 (2) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3)                        | 1                                                    | (4)            | 2                         |
| 157. <sup>E</sup> | Which of the following hormones is produ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uced un                    | der the condition                                    | tion of st     | tress which stimulates    |
|                   | glycogenolysis in the liver of human beings?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                                                      |                |                           |
|                   | (1) Adrenaline (2) Estradiol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (3)                        | Thyroxin                                             | (4)            | Insulin                   |
| 158. <sup>E</sup> | Which of the following orders of ionic radii is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | correctl                   | y represented?                                       |                |                           |
|                   | (1) $O^{2-}>F^->Na^+$ (2) $Al^{+3}>Mg^{2+}>1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N <sup>3-</sup> (3)        | $\mathrm{H}^{-}\!\!>\!\mathrm{H}^{+}\!>\!\mathrm{H}$ | (4)            | $Na^+ > F^- > O^{2-}$     |
| 159. <sup>E</sup> | Which of the following complexes is used to b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e as an a                  | anticancer agen                                      | t?             |                           |
|                   | (1) $\operatorname{cis}-\operatorname{K}_2[\operatorname{PtCl}_2\operatorname{Br}_2]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2)                        | Na <sub>2</sub> CoCl <sub>4</sub>                    |                |                           |
|                   | (3) mer– $[Co (NH_3)_3 Cl_3]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (4)                        | cis-[Pt Cl <sub>2</sub> (                            | NH3)2]         |                           |
| 160. <sup>e</sup> | Reason of lanthanoid contraction is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                                      |                |                           |
|                   | (1) Decreasing nuclear charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (2)                        | Decreasing                                           | screening      | effect                    |
|                   | (3) Negligible screening effect of 'f' orbit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | als                        |                                                      |                | 0                         |
| 161 E             | (4) Increasing nuclear charge (a) $H O + O = H O + 2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                                      |                |                           |
| 101.              | (a) $H_2O_2 + O_3 \rightarrow H_2O + 2O_2$<br>(b) $H_1O_1 + Ag_1O_2 \rightarrow 2Ag_1 + H_1O_2 + O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                                      |                |                           |
|                   | Role of hydrogen peroxide in the above reaction $R_2 = R_2 $ | ons is re                  | spectively:                                          | <b>O</b>       |                           |
|                   | (1) reducing in (a) and (b) (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oxidi                      | zing in (a) and                                      | (b)            |                           |
|                   | (3) oxidizing in (a) reducing in (b) (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | reduc                      | ing in (a) and c                                     | xidizing i     | n (b)                     |
| 162. <sup>E</sup> | Calculate the energy in joule corresponding to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | light of                   | wavelength 45                                        | nm: (Pla       | nck's constant $h = 6.63$ |
|                   | $\times 10^{-34}$ Js; speed of light c = 3 $\times 10^8$ ms <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | X                                                    |                |                           |
|                   | (1) $4.42 \times 10^{-15}$ (2) $4.42 \times 10^{-18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (3)                        | $6.67 \times 10^{15}$                                | (4)            | $6.67 \times 10^{11}$     |
| 163. <sup>e</sup> | Which of the following is an example of a ther                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mosettii                   | ng polymer?                                          |                |                           |
|                   | (1) $H$ $H$ $O$ $O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2)                        | OH                                                   | ОН             |                           |
|                   | $-(CH_2)_6 - N - C - (CH_2)_4 - C - n_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                                      | H <sub>2</sub> | CH <sub>2</sub>           |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                      |                | 'n                        |
|                   | (3) $+CH_2-C=CH-CH_2+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (4)                        |                                                      | -              |                           |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                      | ו              |                           |
| 164. <sup>M</sup> | Equal masses of $H_2$ , $O_2$ and methane have bee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n taken                    | in a container                                       | of volume      | V at temperature 27°C     |
|                   | in identical conditions. The ratio of the volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | es of gas                  | es H <sub>2</sub> :O <sub>2</sub> : met              | hane woul      | ld be:                    |
|                   | (1) $16:1:2$ (2) $8:1:2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (3)                        | 8:16:1                                               | (4)            | 16:8:1                    |
| 165 M             | The weight of eilyer (at $y = 100$ ) displaced by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | titu of alastriait                                   | u which d      | isplaces 5600 mL of O     |
| 105.              | at STP will be:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y a quain                  |                                                      | y which u      |                           |
|                   | (1) 54.0 g (2) 108.0 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3)                        | 5.4 g                                                | (4)            | 10.8 g                    |
| 166. <sup>E</sup> | Of the following 0.10 m aqueous solutions, whice $(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ch one w                   | ill exhibit the la                                   | rgest freez    | ing point depression?     |
| 167 <sup>E</sup>  | (1) Al2 $(5U4)$ (2) K2 $5U4$<br>Which of the following will not be soluble in s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3)<br>Vodium <sup>1</sup> | KUI<br>wdrogen carbo                                 | (4)<br>nate?   | $C_6H_{12}O_6$            |
| 10/.              | (1) o–Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2)                        | Benzenesulp                                          | honic aci      | d                         |
|                   | (3) 2, 4, 6-trinitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (4)                        | Benzoic acid                                         | ł              |                           |
| 168. <sup>E</sup> | Which of the following will be most stable dia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | zonium                     | salt $RN_2^+X^-$ ?                                   |                |                           |
|                   | (1) $CH_3CH_2N_2^+X^-$ (2) $C_6H_5CH_2N_2^+Z^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X <sup>-</sup> (3)         | $CH_3N_2^+X^-$                                       | (4)            | $C_6H_5N_2^+X^-$          |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                      |                |                           |

35.33

- 169.<sup>M</sup> The pair of compounds that can exist together is:
- FeCl<sub>2</sub>, SnCl<sub>2</sub> FeCl<sub>3</sub>, KI FeCl<sub>3</sub>, SnCl<sub>2</sub> HgCl<sub>2</sub>, SnCl<sub>2</sub> (1) (2) (3) (4) 170.<sup>E</sup> Which of the following organic compounds has same hybridization as its combustion product– $(CO_2)$ ? Ethanol (1) Ethene (2) Ethane Ethyne (3) (4)
- 171.<sup>M</sup> In the Kjeldahl's method for estimation of nitrogen present in a soil sample, ammonia evolved from 0.75 g of sample neutralized 10 mL of 1M H<sub>2</sub>SO<sub>4</sub>. The percentage of nitrogen in the soil is: 43.33 37.33

СНО

NO2

COCH<sub>3</sub>

(4)

45.33

(2) (3) (1) 172.<sup>E</sup> Which one is most reactive towards Nucleophilic addition reaction?



173.<sup>M</sup> What products are formed when the following compound is treated with Br<sub>2</sub> in the presence of FeBr<sub>3</sub>? CH<sub>3</sub>





**180.**<sup>E</sup> If a is the length of the side of a cube, the distance between the body centered atom and one corner atom in the cube will be:



| PHYSICS        | BIOL           | CHEMISTRY       |                 |  |
|----------------|----------------|-----------------|-----------------|--|
| 1. (4)         | 46. (4)        | 91. (4)         | 136. (3)        |  |
| 2. (2)         | 47. (4)        | 92. (3)         | 137. (4)        |  |
| 3. (3)         | 48. (1)        | 93. (4)         | 138. (2)        |  |
| 4. (4)         | 49. (4)        | 94. (2)         | 139. (4)        |  |
| 5. (1)         | 50. (4)        | <b>95.</b> (1)  | 140. (4)        |  |
| 6. (3)         | 51. (1)        | <b>96.</b> (1)  | 141. (2)        |  |
| 7. (2)         | <b>52.</b> (1) | 97. (3)         | 142. (4)        |  |
| 8. (4)         | 53. (4)        | <b>98.</b> (4)  | 143. (4)        |  |
| 9. (4)         | 54. (3)        | <b>99.</b> (4)  | 144. (1)        |  |
| 10. (4)        | 55. (1)        | 100. (2)        | 145. (4)        |  |
| 11. (1)        | 56. (3)        | 101. (3)        | 146. (3)        |  |
| 12. (4)        | 57. (3)        | 102. (4)        | 147. (1)        |  |
| 13. (2)        | 58. (3)        | <b>103.</b> (1) | 148. (3)        |  |
| 14. (1)        | 59. (1)        | 104. (4)        | 149. (2)        |  |
| 15. (1)        | 60. (3)        | 105. (1)        | 150. (2)        |  |
| <b>16.</b> (2) | 61. (1)        | 106. (1)        | 151. (3)        |  |
| 17. (3)        | 62. (3)        | 107. (1)        | 152. (1)        |  |
| 18. (2)        | 63. (4)        | <b>108.</b> (1) | 153. (1)        |  |
| <b>19.</b> (1) | <b>64.</b> (2) | 109. (3)        | 154. (3)        |  |
| <b>20.</b> (1) | 65. (1)        | 110. (1)        | 155. (4)        |  |
| 21. (4)        | <b>66.</b> (3) | 111. (1)        | 156. (3)        |  |
| 22. (3)        | 67. (4)        | 112. (3)        | 157. (1)        |  |
| 23. (1)        | 68. (2)        | 113. (2)        | 158. (1)        |  |
| 24. (3)        | <b>69.</b> (1) | 114. (4)        | 159. (4)        |  |
| 25. (2)        | 70. (1)        | 115. (3)        | 160. (3)        |  |
| 26. (3)        | 71. (4)        | 116. (4)        | 161. (1)        |  |
| 27. (2)        | 72. (3)        | 117. (4)        | 162. (2)        |  |
| 28. (3)        | 73. (1)        | 118. (1)        | 163. (2)        |  |
| 29. (2)        | 74. (1)        | 119. (4)        | 164. (1)        |  |
| 30. (2)        | 75. (2)        | 120. (3)        | 165. (2)        |  |
| 31. (1)        | 76. (2)        | 121. (4)        | 166. (1)        |  |
| 32. (4)        | 77. (4)        | 122. (1)        | <b>167.</b> (1) |  |
| 33. (2)        | 78. (3)        | 123. (2)        | <b>168.</b> (4) |  |
| 34. (1)        | 79. (2)        | 124. (4)        | <b>169.</b> (1) |  |
| 35. (2)        | 80. (2)        | 125. (4)        | 170. (4)        |  |
| 36. (2)        | 81. (3)        | 126. (2)        | 171. (3)        |  |
| 37. (4)        | 82. (4)        | 127. (1)        | 172. (2)        |  |
| 38. (2)        | 83. (2)        | 128. (3)        | 173. (3) & (4)  |  |
| <b>39.</b> (1) | <b>84.</b> (1) | 129. (3)        | 174. (4)        |  |
| 40. (4)        | 85. (3)        | 130. (3)        | 175. (3)        |  |
| 41. (4)        | 86. (4)        | 131. (4)        | 176. (4)        |  |
| <b>42.</b> (1) | 87. (3)        | 132. (4)        | 177. (1)        |  |
| 43. (1)        | <b>88.</b> (2) | 133. (3)        | 178. (1)        |  |
| <b>44.</b> (1) | <b>89.</b> (2) | 134. (2)        | 179. (2)        |  |
| 45. (3)        | 90. (4)        | 135. (1)        | 180. (2)        |  |
|                |                |                 |                 |  |

# ANSWER KEY

\_\_\_\_ \* \* \* \_\_\_\_\_

# **HINTS and SOLUTION**

PHYSICS

1. (4) 2. (2)  $\vec{v}_{av} = \frac{\vec{r}_{C} - \vec{r}_{A}}{t_{a} - t_{A}} = \frac{11\hat{i} + 11\hat{j}}{5 - 0} = \frac{11}{5} \left(\hat{i} + \hat{j}\right)$ 3. (3) 4. (4)  $K.E. = E - \phi$ ...(i) ....(ii)  $0.5 = E - \phi$ ...(i)  $0.8 = 1.2 \text{ E} - \phi$ ... (ii) Solving (i) and (ii) we get,  $\phi = 1 \text{ eV}.$ 5. (1)  $0.002 \text{ IG} = 0.998 \text{IS} \Rightarrow \text{S} = \frac{\text{G}}{499}$  $\frac{1}{R} = \frac{1}{G} + \frac{1}{S} \Longrightarrow R = \frac{G}{500}$ 6. (3)  $Mg - F_b = ma$  $F_{b} - (m - m') g = (m - m') a$ Solving (i) and (ii), we get  $m' = \frac{2m}{g+a}$ 7. (2)  $Q = 8 \times 7.06 - 7 \times 5.6$ = 56.48 - 39.2= 17.28 MeV. 8. (4)  $\mu = \frac{\sin 2A}{\sin A} = 2\cos A \,.$ 9. (4)  $\frac{5}{R} = \frac{l_1}{100 - l_1}$  ... (i)  $\frac{5}{R/2} = \frac{1.6l_1}{100 - 1.6l_1}$  (ii) Dividing (i) by (ii)  $\frac{1}{2} = \frac{100 - 1.6l_1}{1.6(100 - l_1)} \Longrightarrow l_1 = \frac{20}{0.8} = 25$ (i)  $\Rightarrow \frac{5}{R} = \frac{25}{75} \Rightarrow R = 15 \Omega.$ 10. (4)  $V = 8 \times 150 = 1200$  Volt

R = 150 × 0.5  
= 75 Ω  
P = 
$$\frac{\mu^2}{R} = \frac{1200 \times 1200}{75} = 19200 \text{ W} = 19.2 \text{ kW}.$$
  
11. (1)  
a =  $\frac{m_1 g - \mu (m_2 g + m_3 g)}{m_1 + m_2 + m_3}$   
a =  $\frac{g(1-2\mu)}{3}$  (·: m\_1 = m\_2 = m\_3 = m)  
12. (4)  
 $\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mK}}$   
 $\lambda' = \frac{h}{\sqrt{2m \times 16K}} = \frac{1}{4}\lambda$   
 $\gamma_0 \text{ change} = \left(\frac{\lambda - \frac{\lambda}{4}}{\lambda}\right) \times 100$   
 $= \frac{3}{4} \times 100 = 75\%$   
13. (2)  
 $\omega = \frac{2\lambda D}{d} = \frac{2 \times 600 \times 10^{-9} \times 2}{1 \times 10^{-3}}$   
 $= 2.4 \times 10^{-3} = 2.4 \text{ mm}.$   
14. (1)  
 $V_c = \sqrt{\frac{2GM}{C'}} \Rightarrow c^2 = \frac{2GM}{R'}$   
 $R' = \frac{2GM}{c^2} = \frac{2gR^2}{c^2} = \frac{2 \times 10 \times (6400 \times 10^2)^2}{9 \times 10^{10}} \approx 10^{-2} \text{ m}.$   
15. (1)  
 $X = \Lambda \cos \omega t$   
 $V = -\Lambda \omega \sin \omega t$   
 $a = -\Lambda \omega^2 \cos \omega t$   
16. (2)  
 $TR = \frac{1}{2}MR^2 \alpha$   
 $T = \frac{MRa}{2} = \frac{50 \times 0.5 \times 4\pi}{2}$   
 $T = 157.00 \text{ N}$   
17. (3)  
 $a_R = \frac{g \sin \theta}{1 + \frac{1}{MR^2}}$   
 $a_S = g \sin \theta$ 

$$\frac{a_{y}}{a_{3}} = \frac{1}{1 + \frac{l}{MR^{2}}} = \frac{1}{1 + \frac{2}{5}} = \frac{5}{7}$$
18. (2)  
19. (1)  
 $I_{2} = I_{0} \cos^{2} \frac{\Phi}{2}$   
 $\phi_{1} = \frac{2\pi}{\lambda} \lambda = 2\pi$   
 $\therefore$   $I_{1} = I_{0} = K$   
 $\phi_{2} = \frac{2\pi}{\lambda} \times \frac{\lambda}{4} = \frac{\pi}{2}$   
 $I_{2} = I_{0} \cos^{2} \frac{\Phi}{2} = \frac{l_{0}}{2} = \frac{K}{2}$   
20. (1)  
 $X = \frac{N_{0}}{2^{n}}$   
 $Y = N_{0} \left(1 - \frac{1}{2^{n}}\right)$   
 $\frac{X}{Y} = \frac{1}{7} = \frac{1}{2^{n} \left(1 - \frac{1}{2^{n}}\right)} \Rightarrow n = 3$   
 $\therefore t = 3t_{1/2} = 3 \times 1.4 \times 10^{9} = 4.2 \times 10^{9} \text{ yr.}$   
21. (4)  
 $P = \frac{2I}{C} = \frac{2 \times 25 \times 10^{4}}{3 \times 10^{4}} = \frac{50}{3} \times 10^{-4} Pa$   
 $F = P \times A = \frac{50}{3} \times 10^{-4} \times 15 \times 10^{-4} = 2.5 \times 10^{-6} \text{ N}$   
22. (3)  
 $\frac{dI}{dt} \propto \Delta I$   
 $\frac{10}{6} = k(65 - T_{0})$   $\therefore$  (i)  
 $\frac{6}{5} = k(57 - T_{0})$   $\therefore$  (ii)  
Dividing (i) by (ii)  $\frac{10}{6} = \frac{65 - T_{0}}{57 - T_{0}} \Rightarrow T_{0} = 45^{\circ}\text{C}.$   
23. (1)  
 $PV = P' \times 2V$   
 $P' = \frac{P}{2}$   
 $PV''' = P''V'''$   
 $PV = P' \times 2V$   
 $P' = \frac{P}{2}$   
 $PV''' = P''V'''$   
 $\frac{P}{2} \times (2V)^{5/3} = P''(16V)^{5/3}$   
 $P'' = \frac{P}{2} (\frac{2V}{16V'})^{5/3} \Rightarrow P'' = \frac{P}{64}$ 

24. (3)

$$y = x \tan \theta - \frac{1}{2} \frac{gx^2}{u^2 \cos^2 \theta}$$
  

$$y = x \tan \theta - \frac{1}{2} \times \frac{9.8x^2}{25 \cos^2 \theta} \quad \text{(for earth)}$$
  

$$y = x \tan \theta - \frac{1}{2} \frac{g'x^2}{9 \cos^2 \theta} \quad \text{(for planet)}$$

Since trajectory is same

$$\frac{9.8}{25} = \frac{g'}{9} \implies g' = 3.5 \text{ m/s}^2$$

25.

(2)

$$\vec{E} = -\frac{\partial V}{\partial x}\hat{i} - \frac{\partial V}{\partial y}\hat{j} - \frac{\partial V}{\partial z}\hat{k}$$

$$\vec{E} = -(6 - 8y)\hat{i} - (-8x - 8 + 6z)\hat{j} - (6y)\hat{k}$$

$$\vec{E} = 2\hat{i} + 10\hat{j} - 6\hat{k}$$

$$E = \sqrt{4 + 100 + 36} = \sqrt{140} = 2\sqrt{35} \text{ N/C}$$

$$F = q E = 4\sqrt{35} \text{ N.}$$
(3)  

$$n = \sqrt{\frac{13.6}{13.6 - E}} \approx 4$$
since there is single atom, number of spectral lines will be  $n - 1 = 3$ 
(2)  
(3)  

$$n_1 = \frac{v}{2l_1} \Rightarrow l_1 = \frac{v}{2n_1}$$

26.

$$n = \sqrt{\frac{13.6}{13.6 - E}} \approx 4$$

# 27.

# 28.

$$n_{1} = \frac{v}{2l_{1}} \Longrightarrow l_{1} = \frac{v}{2n_{1}}$$

$$l_{2} = \frac{v}{2n_{2}}, l_{3} = \frac{v}{2n_{3}}$$

$$l_{1} + l_{2} + l_{3} = \frac{v}{2} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}} + \frac{1}{n_{3}}\right)$$

$$n = \frac{v}{2l} = \frac{v}{v \left(\frac{1}{n_{1}} + \frac{1}{n_{2}} + \frac{1}{n_{3}}\right)}$$

29.

30. 31. (2)

$$[\mathbf{M}] = \begin{bmatrix} F^{a}V^{b}T^{c} \end{bmatrix}$$
$$\begin{bmatrix} M \end{bmatrix} = \begin{bmatrix} MLT^{-2} \end{bmatrix}^{a} \begin{bmatrix} LT^{-1} \end{bmatrix}^{b} \begin{bmatrix} T \end{bmatrix}^{a}$$
$$\mathbf{a} = 1$$
$$\mathbf{a} + \mathbf{b} = 0 \Rightarrow \mathbf{b} = -1$$
$$-2\mathbf{a} - \mathbf{b} + \mathbf{c} = 0$$
$$-2 + 1 + \mathbf{c} = 0 \Rightarrow \mathbf{c} = 1$$
$$\therefore \qquad [\mathbf{M}] = [\mathbf{F}\mathbf{V}^{-1}\mathbf{T}]$$
$$(2)$$
$$(1)$$

 $\phi = \frac{2}{4} = 0.5 \text{ V/m}$  $E = \phi l_1 = 0.5 \times 3 = 1.5$  Volt  $\frac{ER}{R+r} = \phi l_2$  $3 = 2.85 + 0.3 \Omega$ 0.3r = 0.15 $r = 0.5 \Omega$ 32. (4)  $A = \frac{V}{l}, Y = \frac{Fl}{A \times \Lambda l}$  $\mathbf{Y} = \frac{Fl}{\frac{V}{l} \times \Delta l} \Rightarrow \mathbf{Y} = \frac{Fl^2}{V\Delta l}$  $\Delta l = \left(\frac{F}{YV}\right) l^2$ 33. (2) L D 0 c В  $B_{P} = \frac{\mu_{0}}{2\pi d} \sqrt{I_{1}^{2} + I_{2}^{2}}$ 34. (1) 35. (2)  $f = \frac{v}{4l} = 100 \text{ Hz}$  $f_n = \frac{(2n-1)v}{4l}$ n = 1, 2, 3, 4, 5, 6. 36. (2) 37. (4)  $V_p = 200 V$  $P_{p} = 3000 \text{ W}$  $I_p = \frac{3000}{200} = 15A$  $I_s = 6A$  $P_s = 3000 \times 0.9 = 2700 \text{ W}$  $V_s = \frac{2700}{6} = 450V.$ 38. (2)  $m \times 540 + m \times 1 \times (100 - 80)$ 

MENIIT

$$= 20 \times 1 (80 - 10)$$

$$540 m + 20 m = 1400$$

$$m = \frac{1400}{560} = 2.5 gm$$
Total mass = 20 + 2.5 = 22.5 gm.  
39. (1)  
40. (4)  
41. (4)  

$$V = \frac{v}{\sqrt{2}}$$

$$K = \frac{1}{2}mv^2 \times 2 + \frac{1}{2} \times 2m \times \frac{v^2}{2}$$

$$= mv^2 + \frac{1}{2}mv^2 = \frac{3}{2}mv^2$$
42. (1)  

$$\Delta p = 6 - 6 + 12$$

$$= 12 Ns$$
43. (1)  

$$v_0 = 36 km / hr = 10 m/s$$

$$V. = 18 km / hr = 18 \times \frac{5}{18} = 5 m / s$$

$$V = 343 m/s$$

$$Q \rightarrow v_0 \qquad \checkmark v_s$$

$$f' = \left(\frac{V + v_0}{V + v_s}\right) f = \left(\frac{343 + 10}{343 + 5}\right) \times 1392 = \frac{353}{348} \times 1392 = 1412 \text{ Hz.}$$
44. (1)  

$$V = \frac{4}{3}\pi R^3 = n\frac{4}{3}\pi r^3$$

$$\therefore n = \frac{R^2}{r^3}$$

$$\Delta A = 4\pi \left(R^2 - n \times 4\pi^2$$

$$\Delta A = 4\pi \left(\frac{R^2 - r^2 \times \frac{R^3}{r^3}\right) = -4\pi R^3 \left(\frac{1}{r} - \frac{1}{R}\right)$$
Energy released (because area is decreasing) = T AA  

$$= 3TP' \left(\frac{1}{r} - \frac{1}{R}\right)$$
45. (3)

| BIOLOGY    |                                                                                                                   |  |
|------------|-------------------------------------------------------------------------------------------------------------------|--|
|            |                                                                                                                   |  |
| 46.        | (4)                                                                                                               |  |
|            | <i>Planaria</i> is a flatworm and member of phylum Platyhelminthes. It has excellent power of regeneration.       |  |
| 17         | (A)                                                                                                               |  |
| 4/.        | (4)<br>In existic conservation, threatened animals and plants are taken out from their natural habitat and placed |  |
|            | in special setting where they can be protected and given special care                                             |  |
| 48         | (1)                                                                                                               |  |
| -10.       | Although the plant is infected with a virus, the meristems (apical and axillary) is free of virus.                |  |
| 49.        | (4)                                                                                                               |  |
|            | Flagella of bacteria helps in locomotion besides flagella, Pili and Fimbraiae are also surface structures         |  |
|            | of the bacteria and do not play a role in motility.                                                               |  |
| 50.        | (4)                                                                                                               |  |
|            | <i>Torpedo</i> is electric ray. Its electric organs are modified muscle cells.                                    |  |
| 51.        |                                                                                                                   |  |
| 53         | In a stem condition of vascular endarch and in root it is exact.                                                  |  |
| 52.        | (1)<br>According to Hardy Weinberg Equilibrium                                                                    |  |
|            | According to flatdy we moving Equinoffulli $p + a = 1$                                                            |  |
|            | p + q - 1<br>$p^2 + 2p + q^2 = 1$                                                                                 |  |
|            | P + 2 Pq + q = 1<br>$A^2/p^2 = 360$                                                                               |  |
|            | P = 0.6; q = 0.4                                                                                                  |  |
|            | 2Pq = 2(0.6) (0.4) = 0.48                                                                                         |  |
| 53.        | (4)                                                                                                               |  |
|            | Fructose is absorbed into the blood through mucosa cells of intestine by facilitated transport.                   |  |
| 54.        |                                                                                                                   |  |
|            | Aldosterone is a mineralocorticoid secreted by adrenal cortex gland. It is also called salt retaining             |  |
| 55         | normone. It acts on DC1 of nephron and increases reabsorption of Na .                                             |  |
| 33.        | (1)<br>When the plant is kept in dark it turns pale. This is known as etilolation                                 |  |
| 56.        | (3)                                                                                                               |  |
| 000        | Neuromuscular junction (NMJ) is the junction between a motor neuron and the muscle fibre supplied                 |  |
|            | by it. Release of neurotransmitter acetylcholine occurs at NMJ. [NCERT CLASS XI PAGE NO 307]                      |  |
| 57.        | (3)                                                                                                               |  |
| 58.        |                                                                                                                   |  |
| <b>5</b> 0 | Nitrogen and Potassium are mobile elements. Their deficiency effect old leaves.                                   |  |
| 59.        | (1)<br>Adrenal medulla is also called emergency gland. It secretes establications (oninentring and ner            |  |
|            | eninenhrine) which prepare the body to fight with stress                                                          |  |
| 60.        | (3)                                                                                                               |  |
|            | 20J 2.0J 0.02J 0.002J                                                                                             |  |
| (1         | $PLANT \longrightarrow MICE \longrightarrow SNAKE \longrightarrow PEACOCK$                                        |  |
| 61.        | (1)<br>Lilium is an angiosperme. In angiosperm the male compton but a is most reduced                             |  |
| 62         | (3)                                                                                                               |  |
| 04.        | A scrubber can be used to remove gas like sulphurdioxide. In scrubber the exhaust is passed through               |  |
|            | spray of water or lime.                                                                                           |  |
| 63.        | (4)                                                                                                               |  |
|            | Fruit colour in squash is of three types :                                                                        |  |
|            | (i) yellow $\rightarrow$ yy (ii) white $\rightarrow$ (iii) green $\rightarrow$                                    |  |
| 64.        | (2)                                                                                                               |  |
|            | Lichens fails to grow in $\oplus$ of SO <sub>2</sub>                                                              |  |
| 65.        |                                                                                                                   |  |
|            | HIV uses macrophages as factory and then it attacks helper–1 cells and drastically reduces their number.          |  |
|            | [NCERT CLASS XII PAGE NO 156]                                                                                     |  |

66. **(3)** 

- The first human hormone produced by recombinant DNA technology is insulin.
- **67. (4)**

Corpus lacteum acts as a temporary endocrine gland after ovulation and is the main source of progesterone hormone. So the main function of mammalian corpus luteum is to produce progesterone.

**68.** (2)

Lactate fermentation is homofermentation.

**69.** (1)

Stratosphere layer is rich in ozone. Therefore it is also K/A stratosphere.

- 70. (1)
  - Griffith performed transformation in Diplococouspnenumoniae and streptococcus pneumoniae.
- 71. (4)

Competitive inhibition can be overcome by increasing the amount of substrate, so addition of lot of succinate reverses the inhibition of succinic dehydrogenase.

72. (3)

Transcription is conversation of information from DNA to m-RNA.

- 73. (1)
  - Retinal is aldehyde derivative of vitamin A & not vitamin C. [NCERT CLASS XI PAGE NO 324]
- 74. (1)

 $G_1$  phase corresponds to the interval between mitosis and initiation of DNA replication. During  $G_1$  phase the cell is metabolically active and continuously grows but does not replicate its DNA. S or synthesis phase marks the period during which DNA synthesis or replication takes place. During this time the amount of DNA per cell doubles. If the initial amount of DNA is denoted as 2C then it increases to 4C. However, there is no increase in the chromosome number.

75. (2)

Non-albuminous seeds have no residual endosperm as it is completely consumed during embryo development (e.g., pea, groundnut).

- 76. (2)
  - Phylum Cnidaria has fresh water (eg., Hydra) as well as marine species (eg. Obelia).
- 77. (4)

RH whittaker five kingdom system of classification is based upon:

(1)cell type (2) cell wall (3) nuclear membrane (4) body organization (5) mode of nutrition

78. (3)

Templates strand reads in direction 3'----5'. While h-RNA synthesis takes place in 5'----3' direction.

79.



80. (2)

An analysis of chromosomal DNA using the Southern hybridization technique does not use PCR.

81. (

The given diagram is of flowering branch of *Datura*. The drug obtained from this plant acts as Hallucinogen.

82. (4)

Assisted reproductive technology, IVF involves transfer of zygote into the fallopian tube. (or early embryos with upto 8 blastomeres)

83. (2) Sphagnum is responsible for peat formation. 84. (1) High level of hCG stimulates the synthesis of estrogen and progesterone. 85. (3) Tubectomy is a method of sterilization in which small part of the fallopian tube is removed or tied up. 86. (4) The degree of curvature of the coleoptiles was directly proportional to the concentration of the chemical influence in the agar block. Went named this 'chemical influence' responsible for the phototropic response as auxin (derived from a greek word 'auxein' = to increase or to grow). 87. (3) Person with blood group AB is considered as universal recipient because he has both A and B antigens on RBC but no antibodies in the plasma. 88. (2) Filiform apparatus guide the entry of pollen tube. 89. (2) Hypothalamus is thermostat of body or temperature regulating centre of body. So injury localized to the hypothalamus would most likely disrupt regulation of body temperature. 90. (4) Sea-fan (Gorgonia) is animal belonging to phylum cnidaria. 91. (4) LNG-20 is hormone releasing IUCD. [NCERT CLASS XII PAGE NO 60] 92. (3) Archaebacteria differ from Eubacteria in their cell membrane structure. 93. (4) Tracheids are intact structure where as vessels are perforated. 94. (2) Ulothrix has flagella and Sargassum and Ectocarpus are brown algae which have laterally inserted flagella 95. (1) A species facing extremely high risk of extinction in the immediate future is called critically endangered. 96. (1) Nucleoid it represents the viral chromosome. Nucleoid or viral chromosome is made of a single molecule of nucleic acid. It may be linear or viral chromosome is of coiling. Nucleiod is the infective part of virus. The nucleic acid is either DNA or RNA. 97. (3) Rhodospirillium is bacteria. It performs an oxygenic photosynthesis. Rest all perform oxygenic photosynthesis. 98. (4) Commonly used vectors for human genome sequencing are BAC and YAC. 99. (4) Amanita muscaria is noted for its hallucinogenic properties, with its main psychoactive constituent being the compound **muscimol**. 100. (2) Mesosomes are infolding of plasma membrane respiratory enzymes in bacteria are present along the innerside of plama membrane. 101. (3) In 'S' phase of the cell cycle amount of DNA doubles in each cell. 102. (4) If the margins of sepals or petals overlap one another but not in any particular direction as in Cassia and gulmohur, the aestivation is called imbricate. In pea and bean flowers, there are five petals, the largest (standard) overlaps the two lateral petals (wings) which in turn overlap the two smallest anterior petals (keel); this type of aestivation is known as vexillary or papilionaceous. 103. (1)

XY X<sup>C</sup>X

 $X^{C}Y$ ,  $XX, X^{C}Y, XY$ 

- 104. (4)
  - Sucrose is a non-reducing carbohydrate.
- 105. (1)

These are examples of homologous organs. These have similar fundamental structure and perform different function.

106. (1)

A sterile stamen is staminode.

107. (1)

Pollen table are used as food supplement. Pollen grains are rich in nutrients, it has become a fashion in the recent years to use pollen tablets as food supplementary. [NCERT CLASS XII PAGE NO 24].

- 108. (1)
- 109. (3)

Centriole → Basal body cilia or flagella Chlorophyll → Thylakoids Cristate→ Mitochondria Ribozymes → Nucleic acids

110. (1)



111. (1)

Rennin is a proteolytic enzyme found in gastric juice infants and helps in digestion milk proteins.

- **112.** (3) The shared terminal duct of reproductive and urinary system in human male is Urethra.
- 113. (2)

## Sweet potato and carrot are modified root where as ground root is fruit.

- 114. (4)
- 115. (3)
  - Abscissic acid is called stress hormone.
- 116. (4)

Tobaccor mosaic virus shows coiled RNA strand and capsomeres.



## 117. (4)

*Chlorella* and *Spriullina* are unicellular algae, rich in proteins and are used as supplements even by space travelers.

118. (1)

Areolar connective tissue is a type of loose connective tissue. Adipose tissue is also an example of loose connective tissue. Tendon is an example of dense connective tissue. [NCERT CLASS XI PAGE NO 103]

# MENIIT

| 119.         | (4) Gills of prawn and lungs of man are analogous structures. These are different in structure but have similar function.                                                                                                                                                                                                  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 120.         | (3)<br>Approximately seventy percent of carbon-dixoide absorbed by the blood is transported to lungs as bicarbonate ions. [NCERT CLASS XI PAGE NO 274]                                                                                                                                                                     |  |
| 121.         | (4)<br>Vacuoles help to maintain osmotic balance.                                                                                                                                                                                                                                                                          |  |
| 122.<br>123. | <ul> <li>(1)</li> <li>(2)</li> <li>Earthworm →Detritivore ; Succession → Pioneer species ; Ecosystem service → Pollination</li> </ul>                                                                                                                                                                                      |  |
| 124.         | Population growth $\rightarrow$ Natality. (4)                                                                                                                                                                                                                                                                              |  |
| 125          | IUCN publishes the Red List of species.                                                                                                                                                                                                                                                                                    |  |
| 123.         | During this digestion bacteria produced mixture of gases such as methane, hydrogen sulphide and carbon dioxide.                                                                                                                                                                                                            |  |
| 126.         | (2)<br>Keolado National Park is the site of thousands of migratory birds from Siberia and other extremely cold<br>northern regions.                                                                                                                                                                                        |  |
| 127.         | (1)<br>Cuboidal epithelium is composed of single layer of cube like cells. This is commonly found in ducts of glands and tubular parts of nephrons in kidneys [NCERT CLASS XI PAGE 101]                                                                                                                                    |  |
| 128.         | <ul> <li>(3)</li> <li>Geitonogamy is transfer to pollen grains from the anther to the stigma of another flower of the same plant. Although geitonogamy is functionally cross-pollination involving a pollinating agent, genetically it is similar to autogamy since the pollen grains come from the same plant.</li> </ul> |  |
| 129.         | (3)<br>In Turner syndrome there is absence of one of the X chromosomes, i.e., 45 with X0, such females are sterile as ovaries are rudimentary besides other features including lack of other secondary sexual characters.                                                                                                  |  |
| 130.         | (3) The enzyme recombinase is required at Pachytene stage. It helps in crossing over.                                                                                                                                                                                                                                      |  |
| 131.         | (4)<br>Melatonin is produced by pineal gland and regulates normal rhythm of sleep wake cycle. Oxytocin is<br>released from posterior pituitary and it acts on uterine smooth muscles and stimulates uterine<br>contractions. Atrial natruretic factor is released by wall of atria.                                        |  |
| 132.         | (4)<br>Microfilaments are solid cytoskeletal elements where as microtubules are hollow.                                                                                                                                                                                                                                    |  |
| 133.         | (3)<br>Parasympathetic neural signals reduce both heart rate and cardiac output.                                                                                                                                                                                                                                           |  |
| 134.         | (2)<br>Gliding joint is present between carpals. Between humerus and pectoral girdle ball and socket joint is present. Pivot joint is present between atlas (first cervical vertebra and axis (second cervical vertebra).                                                                                                  |  |
| 135.         | (1)                                                                                                                                                                                                                                                                                                                        |  |
| CHEMISTRY    |                                                                                                                                                                                                                                                                                                                            |  |

| 136. | (3)                                                                |
|------|--------------------------------------------------------------------|
| 137. | (4)                                                                |
|      | $\Delta G = \Delta H - T \Delta S$                                 |
|      | $\Delta S = negative (entropy decreases)$                          |
|      | Since $\Delta G < 0 \Rightarrow \Delta H$ must be highly negative. |
| 138. | (2)                                                                |
|      | According to Le–Chatelier principle.                               |

139. (4)

 $\Delta G^{\circ} = -2.303 \text{ RT} \log K_{\text{Sp}}$  $63.3 \times 10^3 = -2.303 \times 8.314 \times 298 \log K_{sp}$  $\log K_{sp} = 11.09$  $\Rightarrow K_{sp} \approx 8 \times 10^{-12}$ 140. (4)  $2.83 = \sqrt{n(n+2)}$  where n is number of unpaired electrons.  $\Rightarrow$  n = 2  $Ni^{2+} = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^0 3d^8.$ 141. (2) The common components of photochemical smog are ozone, nitric oxide, acrolein, formaldehyde and peroxyacetyl nitrate (PAN) 142. (4)  $\Delta G = \Delta H - T \Delta S$ Also  $\Delta H = \Delta U + \Delta n_g RT$  $= 2.1 + 2 \times 2 \times 10^{-3} \times 300$ = 2.1 + 1.2 $\Delta H = 3.3 \text{ K cal.}$  $\Delta G = 3.3 - 300 \times 20 \times 10^{-3}$ = 3.3 - 6 $\Delta G = -2.7$  K cal. 143. (4) According to VSEPR theory. 144. (1)HOH<sub>2</sub>C - CH<sub>2</sub>OH COOH + HOOC  $\bigcirc$ **Terephthalic Acid Ethylene Glycol** Ο CH<sub>2</sub>  $OCH_2$ Dacron (4)  $Fe^{3+} = 3d^5 4s^0$ 145. +0.6<sub>\Delta</sub> 1 -0.4<sub>0</sub>

C.S.F.E = 3 (-0.4)  $\Delta_0$  + 2(0.6) $\Delta_0$  = 0 (3)

Going down the group, acidity increases because bond enthalpy for dissociation of H - E bond decreases going down the group.

147. (1)

146.

 $MnO_4^{2-} \rightarrow MnO_4^{-} + \bar{e}$ 0.1 mole  $MnO_4^{2-} = 0.1$  mole  $\bar{e}$  charge  $= 0.1 \times 96500 \text{ C}$ = 9650 C.

148. (3)

# MEDIIT

 $2Mg + O_2 \longrightarrow 2MgO$ Initial moles  $\frac{1}{24} \frac{0.56}{32}$ = 0.042= 0.01751 mole O<sub>2</sub> reacts with 2 moles of Mg 0.0175 moles  $O_2$  react with 2 × 0.0175 = 0.0350 moles of Mg. Hence amount of Mg left = 0.042 - 0.035= 0.007 moles  $= 0.007 \times 24$ = 0.168 gm. 149. (2) 150. (2) It is example of coupling reaction of aniline. 151. (3)  $CH_3CH_2CH = CH_2 \xrightarrow{HBr/H_2O_2} CH_3CH_2CH_2CH_2Br \xrightarrow{C_2H_5O^-Na^+} CH_3CH_2CH_2CH_2OCH_2CH_3$ 152. (1) Na<sub>2</sub>CO<sub>3</sub> will undergo hydrolysis reaction  $CO_3^{2-} + H_2O \Longrightarrow HCO_3^{-} + HO^{-}$ 153. (1) CO<sub>2</sub> and CH<sub>4</sub> have zero dipole moment NH<sub>3</sub> has higher dipole moment than NF<sub>3</sub> 154. (3) Taking  $T_2 > T_1$ From log  $\frac{\text{Kp}'}{\text{Kp}} = \frac{\Delta H}{2.303 \text{R}} \left[ \frac{1}{T_1} - \frac{1}{T_2} \right]$ THE  $\log \frac{Kp'}{Kp}$  = negative since  $\Delta H$  = Negative  $\Rightarrow$ Kp'<Kp. 155. (4) 156. (3)  $n = 3, \ell = 1, m = 0$  $\Rightarrow$ Either 3p<sub>x</sub> or 3p<sub>y</sub> or 3p<sub>z</sub>. 157. (1) Adrenaline is one of the neurotransmitters that plays a role in mood changes. It is produced by Adrenal medulla. During emergency, it causes glycogenolysis. 158. (1) Symbol Ionic radii  $F^{-}$ 133 pm  $O^{2-}$ 140 pm Na<sup>+</sup>102 pm Hence ionic radii order  $O^{2-} > F^{-} > Na^{+}$ 159. (4)  $Cis - platin (cis - [PtCl_2(NH_3)_2])$  is used an anticancer agent. 160. (3) 161. (1)  $H_2O_3 + O_3 \longrightarrow H_2O_3 + O_2$ Trioxidane  $H_2O + O_2$ 

NO<sub>2</sub>

 $H_2O_2 + Ag_2O \longrightarrow 2Ag + H_2O + O_2$ Hydrogen peroxide acts as reducing agent in both of the reactions. 162. (2) Energy of photon  $E = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{45 \times 10^{-9}}$  $= 4.42 \times 10^{-18}$  Joule 163. (2) Novolac is a thermosetting Polymer. It is formed by phenol and formaldehyde. 164. (1)  $V = \frac{nRT}{P} = \frac{WnRT}{MP}$  $\therefore V_{H_2}: V_{O_2}: V_{CH_4} = \frac{1}{M_{H_1}}: \frac{1}{M_{O_1}}: \frac{1}{M_{CH_1}}$  $\frac{1}{2}:\frac{1}{32}:\frac{1}{16}$ UNDATIC = 16:1:2165. (2)  $2O^{2-} \longrightarrow O_2 + 4e^{-}$ 22400 ml  $O_2 = 4$  Faraday charge 5600 ml O<sub>2</sub> =  $\frac{4}{22400} \times 5600 = 1$  Farady charge  $Ag^+ + e^- \longrightarrow Ag$  $\Rightarrow$  1 Faraday charge = 108 gm Ag. 166. (1) $Al_2(SO_4)_2$  will dissociate to give highest number of particles. 167. (1)o-nitrophenol is weak acid hence it will not be soluble in NaHCO<sub>3</sub>. 168. (4) Aryl diazonium salts are most stable. 169. (1)FeCl<sub>2</sub>, SnCl<sub>2</sub> contain  $Fe^{2+}$  and Sn<sup>2+</sup> ions. Both cannot under go redox reaction mutually together. 170.  $\underbrace{H-C \equiv C-H}_{\text{sp hybridization of}} + \frac{5}{2}O_2 - \underbrace{H-C}_{\text{sp hybridization of}} + \underbrace{H-C}_{\text{sp hybridizatio}} + \underbrace{H-C}_{\text{sp hybridizat$  $\rightarrow 2 \underbrace{O} = \underbrace{C} = \underbrace{O}_{\text{sp hybridization}} + \underbrace{H_2O}_{\text{sp hybridization}}$ 171. (3)  $2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$ 10 ml, 1 M  $H_2SO_4 = 10$  millimoles of  $H_2SO_4$ = 20 millimoles of NH<sub>3</sub> = 20 m moles of N Hence weight of N =  $20 \times 10^{-3} \times 14 = 0.280$  gm Hence % of Nitrogen =  $\frac{0.28}{0.75} \times 100 = 37.33$ . 172. (2) сно

Carbonyl carbon is most reactive for nucleophilic addition due to -I and -R effect exerted by NO<sub>2</sub> group.

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com



Oxidation state of Cr in  $CrO_5$  is +6.

#### 178. (1)

Aspartame is roughly 100 times as sweet as can sugar. Its use is limited to cold foods P soft drinks because it is unstable at working temperature others i.e., Alitame, Saccharine and Sucralose are stable at working temperature.

179. (2)



180. (2)

The length of body diagonal is  $\sqrt{3}$  a where a is the side of the unit cell.

Hence distance between body centre atom and corner atom is  $\frac{\sqrt{3a}}{2}$ .